
Introduction to
Slint

What is Slint?
- The Slint design markup language

describes extensible graphical user
interfaces using the Slint framework

- The Slint language enforces a
separation of user interface from
business logic, using interfaces you
can define for your project

- It only describes the user interface
and it is not a programming
language; the business logic is
written in a different programming
language using the Slint API

https://slint.dev/

The .slint file
- UI components as tree elements

- Elements vs Components

- Elements with pre-defined names:
- root -> refers to the outermost element of a

component
- self -> refers to the current element
- parent -> refers to the parent element of

the current element

component MyButton inherits Text {
 color: black;
 // ...
}

export component MyApp inherits Window {
 preferred-width: 200px;
 preferred-height: 100px;
 Rectangle {
 width: 200px;
 height: 100px;
 background: green;
 }
 MyButton {
 x:0;y:0;
 text: "hello";
 }
 MyButton {
 y:0;
 x: 50px;
 text: "world";
 }
}

Element naming
- Elements have properties which you can

assign values to

- You can name elements using the :=
syntax

- Here we assign a string constant “hello” to
the first MyButton’s text property

component MyButton inherits Text {
 // ...
}

export component MyApp inherits Window {
 preferred-width: 200px;
 preferred-height: 100px;

 hello := MyButton {
 x:0;y:0;
 text: "hello";
 }
 world := MyButton {
 y:0;
 text: "world";
 x: 50px;
 }
}

Positioning and layout of the elements
- x and y properties store the elements

coordinates relative to their parent element
- The width and height properties store the

size of visual elements
- You can create an entire GUI by placing the

elements in two ways:
- Explicitly - by setting the x, y, width,

and height properties
- Automatically - by using layout

elements

Explicit placement
- Great for static scenes with few elements

- The default values for x and y properties
are such that elements are centered within
their parent

- The default values for width and height
depend on the type of element

- The following elements don’t have content
and default to fill their parent element when
they do not have children:

- Rectangle

- TouchArea

- FocusScope

- Flickable

// Explicit positioning
export component Example inherits Window {
 width: 200px;
 height: 200px;
 Rectangle {
 x: 100px;
 y: 70px;
 width: parent.width - self.x;
 height: parent.height - self.y;
 background: blue;
 Rectangle {
 x: 10px;
 y: 5px;
 width: 50px;
 height: 30px;
 background: green;
 }
 }
}

Automatic placement using layouts
- Slint comes with different layout

elements that automatically calculate
the position and size of their children:

- VerticalLayout /
HorizontalLayout: The children
are placed along the vertical or
horizontal axis

- GridLayout: The children are
placed in a grid of columns and
rows

- Each element has a minimum, a maximum
size, and a preferred size

- The default value of these constraint
properties may depends on the content of the
element

VerticalLayout and HorizontalLayout
- These layouts place their children in a

column or a row

- They stretch or shrink to take the whole
space

- You can adjust the element’s alignment
as needed

// Stretch by default
export component Example inherits Window {
 width: 200px;
 height: 200px;
 HorizontalLayout {
 Rectangle { background: blue; min-width: 20px; }
 Rectangle { background: yellow; min-width: 30px; }
 }
}

// Unless an alignment is specified
export component Example inherits Window {
 width: 200px;
 height: 200px;
 HorizontalLayout {
 alignment: start;
 Rectangle { background: blue; min-width: 20px; }
 Rectangle { background: yellow; min-width: 30px; }
 }
}

Basic Slint types

Properties
- Built-in elements come with common

properties such as color or dimensional
properties

- In addition to the existing properties, define
extra properties by specifying the name, the
type, and optionally a default value

export component Example {
 // declare a property of type int with the name
`my-property`
 property<int> my-property;

 // declare a property with a default value
 property<int> my-second-property: 42;
}

Access qualifiers
Annotate custom the properties with a qualifier that
specifies how the property can be read and written:

- private (the default): The property can only be
accessed from within the component

- in: The property is an input; it can be set and
modified by the user of this component

- out: An output property that can only be set by
the component; it’s read-only for the users of the
components

- in-out: The property can be read and modified
by everyone

All properties declared at the top level of a component
that aren’t private are accessible from the outside
when using a component as an element, or via the
language bindings from the business logic.

export component Button {
 // This is meant to be set by the user of the
component.
 in property <string> text;
 // This property is meant to be read by the user
of the component.
 out property <bool> pressed;
 // This property is meant to both be changed by
the user and the component itself.
 in-out property <bool> checked;

 // This property is internal to this component.
 private property <bool> has-mouse;
}

Bindings
- The binding expression is automatically

re-evaluated when properties accessed
in the expression change

- Internally, a dependency is registered
for any property accessed while
evaluating a binding

- When a property changes, the
dependencies are notified and all
dependent bindings are marked as dirty

import { Button } from "std-widgets.slint";
export component Example inherits Window {
 preferred-width: 50px;
 preferred-height: 50px;
 Button {
 property <int> counter: 3;
 clicked => { self.counter += 3 }
 text: self.counter * 2;
 }
}

Modules
- Components declared in a .slint

file can be used as elements in other
.slint files, by means of exporting
and importing them

- By default, every type declared in a
.slint file is private. The export
keyword changes this.

- A way of exporting a component is to
declare it exported right away

- In the event that two files export a
type under the same name, we have
the option of assigning a different
name at import time

export component Button inherits Rectangle {
 // ...
}

import { Button } from "./button.slint";

export component App inherits Rectangle {
 // ...
 Button {
 // ...
 }
}

import { Button } from "./button.slint";
import { Button as CoolButton } from
"../other_theme/button.slint";

export component App inherits Rectangle {
 // ...
 CoolButton {} // from other_theme/button.slint
 Button {} // from button.slint
}

Module syntax
import { export1 } from "module.slint";

import { export1, export2 } from "module.slint";

import { export1 as alias1 } from "module.slint";

import { export1, export2 as alias2, /* ... */ } from "module.slint";

// Export declarations
export component MyButton inherits Rectangle { /* ...
*/ }

// Export lists
component MySwitch inherits Rectangle { /* ... */ }
export { MySwitch };
export { MySwitch as Alias1, MyButton as Alias2 };

// Re-export all types from other module
export * from "other_module.slint";

UI Example
import { AboutSlint, Button, VerticalBox } from "std-widgets.slint";

export component Demo inherits Window{

 background: white;

 VerticalBox {

 alignment: start;

 Text {

 text: "Hello World!";

 font-size: 24px;

 horizontal-alignment: center;

 color: black;

 }

 Image {

 vertical-alignment: ImageVerticalAlignment.center;

 horizontal-alignment: ImageHorizontalAlignment.center;

 source: @image-url("https://slint.dev/logo/slint-logo-full-light.svg");

 }

 HorizontalLayout { alignment: center; Button { primary: true;

 text: "OK!";} }

 }

}

Challenge time
SlintPad: https://slintpad.com

UI pre-built elements:
https://releases.slint.dev/1.1.0/docs/slint/src/builtins/element
s

UI widgets:
https://releases.slint.dev/1.1.0/docs/slint/src/builtins/widgets

Replicate the following UI

https://slintpad.com/
https://releases.slint.dev/1.1.0/docs/slint/src/builtins/elements
https://releases.slint.dev/1.1.0/docs/slint/src/builtins/elements
https://releases.slint.dev/1.1.0/docs/slint/src/builtins/widgets

Replicate this UI while following these
guidelines:

- “First name” and “Last name”
fields are TextInputs

- Age counter is represented by a
SpinBox

- The text inside the SpinBox needs
to be represented by a separate
component defined by you

- The color list needs to be a
Listview

Expressions
- A powerful way to declare relationships and

connections in your user interface

- When the properties change, the
expression is automatically re-evaluated
and a new value is assigned to the property
the expression is associated with

- Arithmetic in expression with numbers
works like in most programming language
with the operators *, +, -, /

- String concatenation is made with +

- Access an element’s properties by using its
name, followed by a . and the property
name

export component Example {
 in-out property <int> p: 1 * 2 + 3 * 4; // same as (1 * 2) + (3 * 4)
}

export component Example {
 foo := Rectangle {
 x: 42px;
 }
 x: foo.x;
}

Functions
- Declare helper functions with the

function keyword

- Functions are private by default,
but can be made public with the
public annotation

export component Example {
 in property <int> min;
 in property <int> max;
 public function inbound(x: int) -> int {
 return Math.min(root.max, Math.max(root.min, x));
 }
}

Callbacks
- Callbacks are invoked by “calling” them

like you would call a function

- You react to callback invocation by
declaring a handler using the => arrow
syntax

- The built-in TouchArea element declares a
clicked callback, that’s invoked when the
user touches the rectangular area covered
by the element, or clicks into it with the
mouse

export component Example inherits Rectangle {
 // declares a callback with a return value
 callback hello(int, int) -> int;
 hello(aa, bb) => { aa + bb }
}

export component Example inherits Rectangle {
 // declare a callback
 callback hello;

 area := TouchArea {
 // sets a handler with `=>`
 clicked => {
 // emit the callback
 root.hello()
 }
 }
}

Repetition
- Use the for-in syntax to create an element multiple

times
- The name will be available for lookup within the element

and is going to be like a pseudo-property set to the value
of the model

- The model can be of the following type:
- an integer, in which case the element will be repeated

that amount of time
- an array type or a model declared natively, in which

case the element will be instantiated for each element
in the array or model

Syntax:

for name[index] in model : id := Element { ... }

export component Example inherits Window {
 preferred-width: 300px;
 preferred-height: 100px;
 for my-color[index] in [#e11, #1a2, #23d]: Rectangle {
 height: 100px;
 width: 60px;
 x: self.width * index;
 background: my-color;
 }
}

https://releases.slint.dev/1.7.1/docs/slint/src/language/syntax/types#arrays-and-models

Conditional element
- The if construct instantiates an element only if a

given condition is true
- Syntax: if condition: id := Element { ... }

export component Example inherits Window {
 preferred-width: 50px;
 preferred-height: 50px;
 if area.pressed : foo := Rectangle { background: blue; }
 if !area.pressed : Rectangle { background: red; }
 area := TouchArea {}
}

Slint components in Rust
- A component is instantiated using the fn new() -> Self function

- After instantiating the component, call ComponentHandle::run() on show it on
the screen and spin the event loop to react to input events

- To show multiple components simultaneously, call ComponentHandle::show()
on each instance

- For each top-level property of the components we have a getter and a setter:

- fn get_<property_name>(&self) -> <PropertyType>

- fn set_<property_name>(&self, value: <PropertyType>)

https://docs.rs/slint/0.2.1/slint/docs/generated_code/struct.SampleComponent.html#method.new
https://docs.rs/slint/0.2.1/slint/trait.ComponentHandle.html#tymethod.run
https://docs.rs/slint/0.2.1/slint/trait.ComponentHandle.html#tymethod.show
https://docs.rs/slint/0.2.1/slint/docs/generated_code/struct.SampleComponent.html#method.get_counter
https://docs.rs/slint/0.2.1/slint/docs/generated_code/struct.SampleComponent.html#method.set_counter

Threading and Event loop
- For platform-specific reasons, the event loop must run in the main thread

- All the components must be created in the same thread as the thread the event loop is running or is going
to run

- The minimum amount of work should be performed in the main thread and delegate the actual logic to
another thread to avoid blocking animations

- Use the invoke_from_event_loop function to communicate from your worker thread to the UI thread

https://docs.rs/slint/0.2.1/slint/fn.invoke_from_event_loop.html

Bonus: https://releases.slint.dev/1.0.2/docs/tutorial/rust/

https://releases.slint.dev/1.0.2/docs/tutorial/rust/

