

Edge Al Workshop

Lecture II - Language Models

Workshop Overview

- 1. Part 0: Introduction to the Team & Rust for Edge Al
- 2. Part I: Lecture on Computer Vision
 - a. Main problems in Computer Vision
 - b. What exactly is a neural network? (CNNs / Transformers
 - c. What exactly is an image embedding?
 - d. Computer vision on the Edge
- 3. Hands-On I: Air-gapped Face recognition on the Pi
- 4. Part II: Lecture on Natural Language Processing
 - a. A bit of history & development of modern LLMs
 - b. How does an LLM work? Tokenizers, pretraining, post-training
 - c. Context Engineering: Tool calling, RAG
 - d. Libraries: tokenizers-rs, llama.cpp
- Hands-On II: Chat with a LLM on Pi

Workshop Overview

- 1. Part 0: Introduction to the Team & Rust for Edge Al
- 2. Part I: Lecture on Computer Vision
 - a. Main problems in Computer Vision
 - b. What exactly is a neural network? (CNNs / Transformers
 - c. What exactly is an image embedding?
 - d. Computer vision on the Edge
- 3. Hands-On I: Air-gapped Face recognition on the Pi
- 4. Part II: Lecture on Natural Language Processing
 - a. A bit of history & development of modern LLMs
 - b. How does an LLM work? Tokenizers, pretraining, post-training
 - c. Context Engineering: Tool calling, RAG
 - d. Libraries: tokenizers-rs, llama.cpp
- Hands-On II: Chat with a LLM on Pi

This lecture

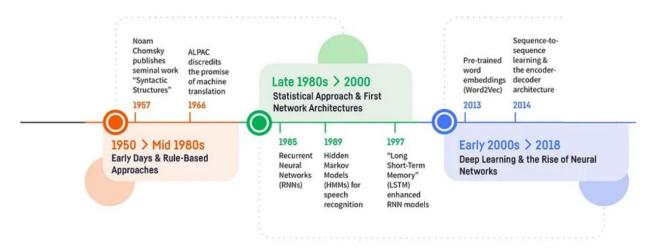
- The historical developments of the ideas behind modern language models
 - Mostly from OpenAI, since their path was quite clear and their models were highly influential to the research community

- High level overview of how modern LLMs are trained and fine-tuned

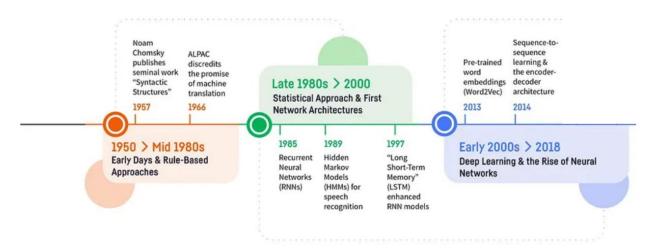
Prompting methods

Patterns for deployment on the edge

The old times (pre 2017)

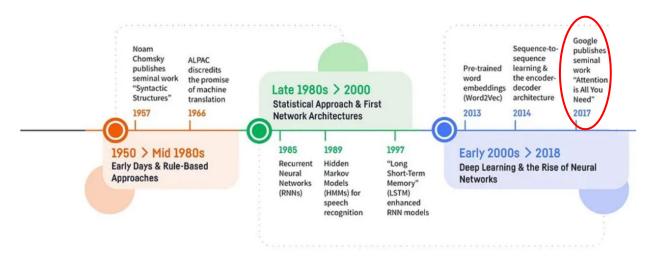


The old times (pre 2017)

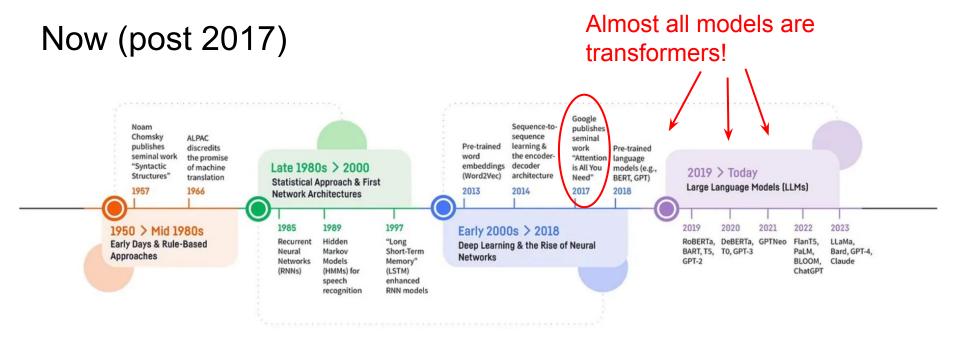


- Each problem has its own architecture, with small quirks and problem-specific design choices
- Both in NLP and Computer Vision

The old times (pre 2017)



- Each problem has its own architecture, with small quirks and problem-specific design choices
- Both in NLP and Computer Vision
- 2017 Google published "Attention is all you need"



- Each problem has its own architecture, with small quirks and problem-specific design choices
- Both in NLP and Computer Vision
- 2017 Google published "Attention is all you need"

The story of deep learning in a sentence

Old methods, developed in the '80s and '90s, when scaled up, started to work.

"We think the most benefits will go to whoever has the biggest computer."

Greg Brockman, OpenAl's CTO

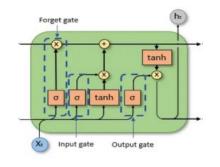
"Compute is getting cheaper faster than we are becoming better researchers"

Hyung Won Chung Research Scientist at OpenAI

Why now?

Past

LSTM



= Doesn't Work

Present

Multi-Head Attention

Linear

Concat

Scaled Dot-Product
Attention

Linear

Linear

Linear

Linear

+

= Works

Seq2Seq, Google, 2014

- Use LSTM as encoder-decoder
- Input is a sequence → output is a sequence
- Solve machine translation → solve language modelling

 "The success of our simple LSTM-based approach on MT suggests that it should do well on many other sequence learning problems, provided they have enough training data."

Sequence to Sequence Learning with Neural Networks

Ilya Sutskever
Google
ilvasu@google.com

Oriol Vinyals
Google
vinyals@google.com

Quoc V. Le Google qvl@google.com

Abstract

Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT'14 dataset, the translations produced by the LSTM achieve a BLEU score of 34.8 on the entire test set, where the LSTM's BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to 36.5, which is close to the previous best result on this

- Given some words, what comes word next?

- Examples:
 - One, two, three, four ... [?]

- Given some words, what comes word next?

- Examples:
 - One, two, three, four ... [?]
 - The capital of France is ... [?]

Given some words, what comes word next?

- Examples:

- One, two, three, four ... [?]
- The capital of France is ... [?]
- 25 + 13 = ... [?]

Given some words, what comes word next?

Examples:

- One, two, three, four ... [?]
- The capital of France is ... [?]
- 25 + 13 = ... [?]
- $\int \frac{1}{x} dx = \dots [?]$

A form of inductive reasoning

Pretraining on text - Next Token Prediction

Given some words, what comes word next?

- Examples:

- One, two, three, four ... [?]
- The capital of France is ... [?]
- 25 + 13 = ... [?]

$$- \int \frac{1}{x} dx = \dots [?]$$

- The solution to the Riemann Hypothesis is ... [?]

- Given some words, what comes word next?
- Train the model to do this for every word in a sentence.
 - [?] is computed as a classification problem over the vocabulary

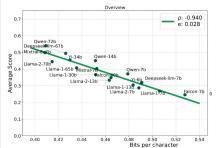
- The ... [?]
- The capital ... [?]
- The capital of ... [?]
- The capital of France ... [?]
- The capital of France is ... [?]

A form of (pretext-based) self-supervised learning!

Next Token Prediction

- Simple to describe and implement
- Difficult for the model to do accurately
- For the model to accurately predict what comes next, it needs to "understand" the world

Intelligence = Compression



Compression Represents Intelligence Linearly

Yuzhen Huang*¹ Jinghan Zhang*¹ Zifei Shan² Junxian He

¹The Hong Kong University of Science and Technology

²Tencent

[yhuangh], [zhang]v, junxianh]@cse.ust.hk

Abstract

There is a belief that learning to compress well will lead to intelligence (full ref. 2008). Recently, leanguage modeling, has been shown to be equivalent to compression, which offers a compelling rationale for the success of large temperature of the compression which facilities intelligence. Despite such appealing discussions, little empirical evidence is present models in sessentially enhancing compression which facilities intelligence. Despite such appealing discussions, little empirical evidence is present experimental evidence of the compression of the compression. Given the abstract concept of "intelligence", we adopt the average downstream benchmark scores a surrogate, specifically targeting-industry and appealing the compression of the compression indicates greater intelligence. Furthermore, our findings suggest that LIAM intelligence is related to correct the compression indicates greater intelligence. Furthermore, our findings suggest indicates greater intelligence. Furthermore, our findings suggest indicates greater intelligence. Furthermore, our findings suggest that corporal pression indicates greater intelligence. Furthermore, our findings suggest that compression indicates in policies in the compression of the compression indicates in the compression indicates in the compression indicates and the compression indicate

2015 - Ideas were already in the collective consciousness

About

The Unreasonable Effectiveness of Recurrent Neural Networks

May 21, 2015

There's something magical about Recurrent Neural Networks (RNNs). I still remember when I trained my first recurrent network for Image Captioning. Within a few dozen minutes of training my first baby model (with rather arbitrarily-chosen hyperparameters) started to generate very nice looking descriptions of images that were on the edge of making sense. Sometimes the ratio of how simple your model is to the quality of the results you get out of it blows past your expectations, and this was one of those times. What made this result so shocking at the time was that the common wisdom was that RNNs were supposed to be difficult to train (with more experience I've in fact reached the opposite conclusion). Fast forward about a year: I'm training RNNs all the time and I've witnessed their power and robustness many times, and yet their magical outputs still find ways of amusing me. This post is about sharing some of that madic with you.

We'll train RNNs to generate text character by character and ponder the question "how is that even possible?"

By the way, together with this post I am also releasing code on Github that allows you to train character-level language models based on multi-layer LSTMs. You give it a large chunk of text and it will learn to generate text like it one character at a time. You can also use it to reproduce my experiments below. But we're getting ahead of ourselves: What are RNNs anyway?

Recurrent Neural Networks

Sequences. Depending on your background you might be wondering: What makes Recurrent Networks so special? A glaring limitation of Vanilla Neural Networks (and also Convolutional Networks) is that their API is too constrained: they accept a fixed-sized vector as input (e.g. an image) and produce a fixed-sized vector as output

Linux Source Code

I wanted to push structured data to its limit, so for the final challenge I decided to use code. In particular, I took all the source and header files found in the Linux repo on Giffub, concatenated all of them in a single giant file (474MB of C code) (I was originally going to train only on the kernel but that by isself is only -16MB). Then I trained several as-large-as-tiles-on-my-GPU 3-layer LSTMs over a period of a few days. These models have about 10 million peraineters, which is still on the lower end for PMN models. The results are superfurn.

```
static int indicate policy(void)
 int error:
 if (fd == MARN EPT) {
   if (ss->segment < mem total)
    unblock graph and set blocked();
    ret = 1:
   goto bail;
  segaddr = in SB(in.addr);
 selector = seg / 16;
 setup works = true;
 for (i = \theta; i < blocks; i++) {
   seq = buf[i++];
   bpf = bd->bd.next + i * search;
   if (fd) {
    current = blocked;
 rw->name = "Getibbregs":
 regs->new = blocks[(BPF STATS << info->historidac)] | PFMR CLOBATHING SECONDS << 12;
```

Wikipedia

We saw that the LSTM can learn to spell words and copy general syntactic structures. Lets further increase the difficulty and train on structured markdown. In particular, lets take the Hutter Prize 100MB dataset of raw Wikipedia and train an LSTM. Following Graves et al., I used the first 96MB for training, the rest for validation and ran a few models overnight. We can now sample Wikipedia articles! Below are a few fun excerpts. First, some basic markdown output:

Naturalism and decision for the majority of Arab countries' capitalide was grounded by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal in the [[Protestant Immineners]], which could be said to be directly in Cantonese Communication, which followed a ceremony and set inspired prison, training. The emperor travelled back to [[Antioch, Perth, October 25|21|] to note, the Kingdom of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known in western [[Scotland]], near Italy to the conquest of India with the conflict. Copyright was the succession of independence in the slop of Syrian influence that was a famous German movement based on a more popular servicious, non-doctrinal and sexual power post. Many governments recognize the military housing of the [[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]], that is sympathetic to be to the [[Punjab Resolution]] (PJS)[http://www.humah.vahoo.com/guardian. cfm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery was swear to advance to the resources for those Socialism's rule,

was starting to signing a major tripad of aid exile.]]

Colemniste to position in mic:

A continuous production in mic:

A

The sentiment neuron - OpenAI, 2017

- Train byte-level LSTM to generate
 IMDB reviews, unsupervised
- 4 Pascal GPUs for a month.

- "we find a single unit which performs sentiment analysis"
 - A particular neuron activates when the review in positive and deactivates when the review is negative

Learning to Generate Reviews and Discovering Sentiment

Alec Radford 1 Rafal Jozefowicz 1 Ilya Sutskever 1

Abstract

We explore the properties of byte-level recurrent language models. When given sufficient amounts of capacity, training data, and compute time, the representations learned by these models include disentangled features corresponding to high-level concepts. Specifically, we find a single unit which performs sentiment analysis. These representations, learned in an unsupervised manner, achieve state of the art on the binary subset of the Stanford Sentiment Treebank. They are also very data efficient. When using only a handful of labeled examples, our approach matches the performance of strong baselines trained on full datasets. We also demonstrate the sentiment unit has a direct influence on the generative process of the model. Simply fixing its value to be positive or negative generates samples with the corresponding positive or negative sentiment.

it is now commonplace to reuse these representations on a broad suite of related tasks - one of the most successful examples of transfer learning to date (Oquab et al., 2014).

There is also a long history of unsupervised representation learning (Olshausen & Field, 1997). Much of the early research into modern deep learning was developed and validated via this approach (Hinton & Salakhutdinov, 2006) (Huang et al., 2007) (Vincent et al., 2008) (Coates et al., 2010) (Le, 2013). Unsupervised learning is promising due to its ability to scale beyond only the subsets and domains of data that can be cleaned and labeled given resource, privacy, or other constraints. This advantage is also its difficulty. While supervised approaches have clear objectives that can be directly optimized, unsupervised approaches rely on proxy tasks such as reconstruction, density estimation, or generation, which do not directly encourage useful representations for specific tasks. As a result, much work has gone into designing objectives, priors, and architectures meant to encourage the learning of useful representations. We refer readers to Goodfellow et al. (2016) for a detailed

The sentiment neuron - OpenAI, 2017

- Train byte-level LSTM to generate
 IMDB reviews, unsupervised
- 4 Pascal GPUs for a month

- "we find a single unit which performs sentiment analysis"
 - A particular neuron activates when the review in positive and deactivates when the review is negative

Judy Holliday struck gold in 1950 withe George Cukor's film version of "Born Yesterday," and from that point forward, her career consisted of trying to find material good enough to allow her to strike gold again. It never happened. In "It Should Happen to You" (I can't think of a blander title, by the way), Holliday does yet one more variation on the dumb blonde who's maybe not so dumb after all, but everything about this movie feels warmed over and half hearted. Even Jack Lemmon, in what I believe was his first film role, can't muster up enough energy to enliven this recycled comedy. The audience knows how the movie will end virtually from the beginning, so mostly it just sits around waiting for the film to catch up. Maybe if you're enamored of Holliday you'll enjoy this; otherwise I wouldn't bother. Grade: C

Once in a while you get amazed over how BAD a film can be, and how in the world anybody could raise money to make this kind of crap. There is absolutely No talent included in this film - from a crappy script, to a crappy story to crappy acting. Amazing...

Team Spirit is maybe made by the best intentions, but it misses the warmth of "All Stars" (1997) by Jean van de Velde. Most scenes are identic, just not that funny and not that well done. The actors repeat the same lines as in "All Stars" but without much feeling.

God bless Randy Quaid...his leachorous Cousin Eddie in Vacation and Christmas Vacation hilariously stole the show. He even made the awful vegas Vacation at least worth a look. I will say that he tries hard in this made for TV sequel, but that the script is so NON funny that the movie never really gets anywhere. Quaid and the rest of the returning Vacation vets (including the orginal Audrey, Dana Barron) are wasted here. Even European Vacation's Eric Idle cannot save the show in a brief cameo.... Pathetic and sad...actually painful to watch...Christmas Vacation 2 is the worst of the Vacation franchise.

The sentiment neuron - OpenAI, 2017

"... our work encourages further research into language modelling as it demonstrates that the standard language modelling objective

with no modifications

is sufficient to learn high-quality representations ..."

Attention Is All You Need

Ashish Vaswani*
Google Brain
avaswani@google.com

Noam Shazeer*
Google Brain
noam@google.com

Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones*
Google Research
llion@google.com

Aidan N. Gomez* †
University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser*
Google Brain
lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com

Noam Shazeer* Google Brain noam@google.com

Niki Parmar* Google Research nikip@google.com

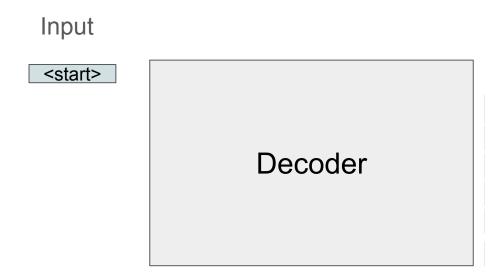
Jakob Uszkoreit* Google Research usz@google.com

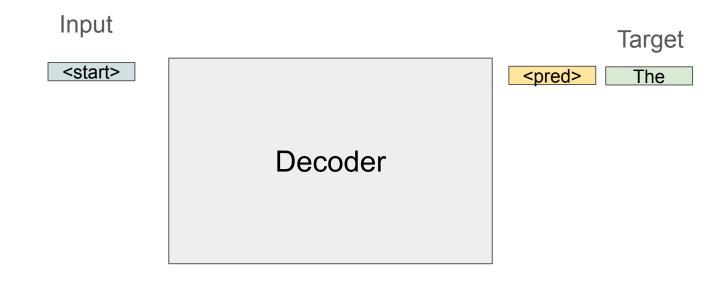
Google Research llion@google.com

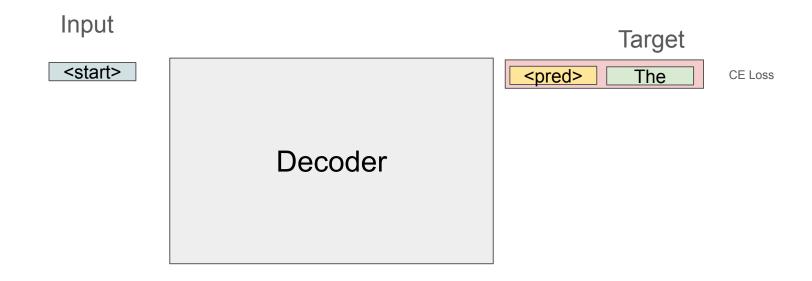
Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu

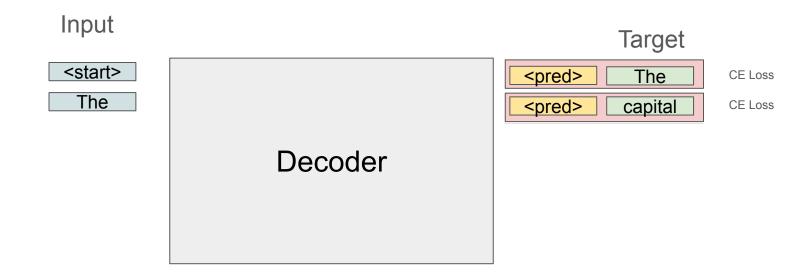
Łukasz Kaiser* Google Brain lukaszkaiser@google.com

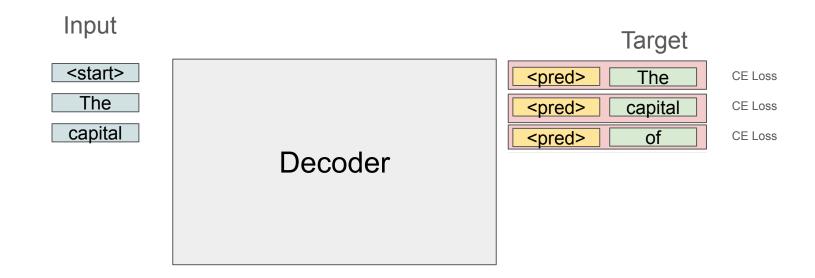
Illia Polosukhin* ‡ illia.polosukhin@gmail.com

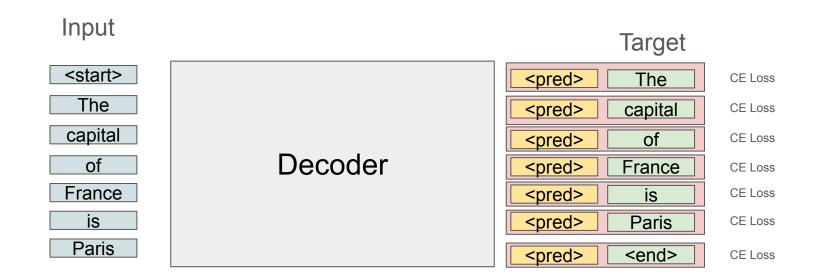


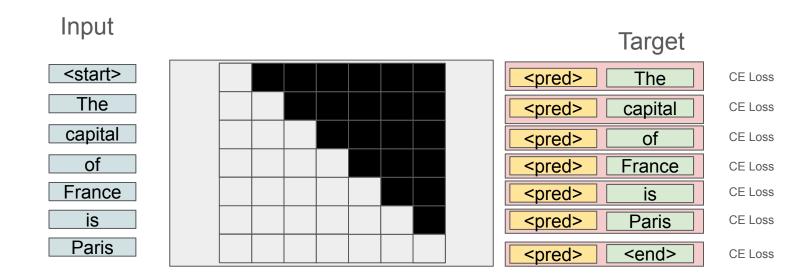












Using a causal attention mask, we can do this in a single forward pass!

Seq2Seq is all you need?

- People started to realize that all NLP problems can be cast as text in -> text out
- Example: Text-to-Text Transfer Transformer (T5), 2019

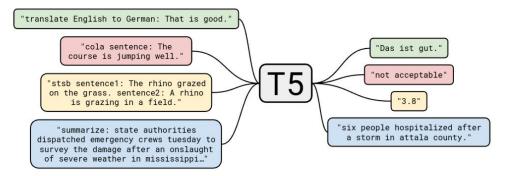


Figure 1: A diagram of our text-to-text framework. Every task we consider—including translation, question answering, and classification—is cast as feeding our model text as input and training it to generate some target text. This allows us to use the same model, loss function, hyperparameters, etc. across our diverse set of tasks. It also provides a standard testbed for the methods included in our empirical survey. "T5" refers to our model, which we dub the "Text-to-Text Transfer Transformer".

An aside: Tokenization

- Text tokenization = splitting a string into a sequence of tokens

- Most methods so far used either
 - Word-level tokenization
 - Character-level tokenization

- Both are inadequate
 - Splitting by words results in many "out-of-vocabulary" words
 - Misspellings? Many edge cases.
 - Splitting text by characters results in very large sequence length which is computationally intractable

Tokenization: Word-level splitting

- What happens when we encounter a word that we have never seen in our training data?
 - Not much we can do
 - Assign a special <UNK> token
 - Lose a lot of meaning
 - Especially hurts in texts/languages with many rare words/entities

- "amazing!", "state-of-the-art", "un-thinkable", "prize-winning", "aren't", "O'Neill"
- Some languages don't even use spaces to mark word boundaries!

Tokenization: Character-level splitting

- Vocabulary size is small
 - 256 entries
- No unknown tokens

- However, sequence is much larger
- Need to learn from scratch how to combine characters into words

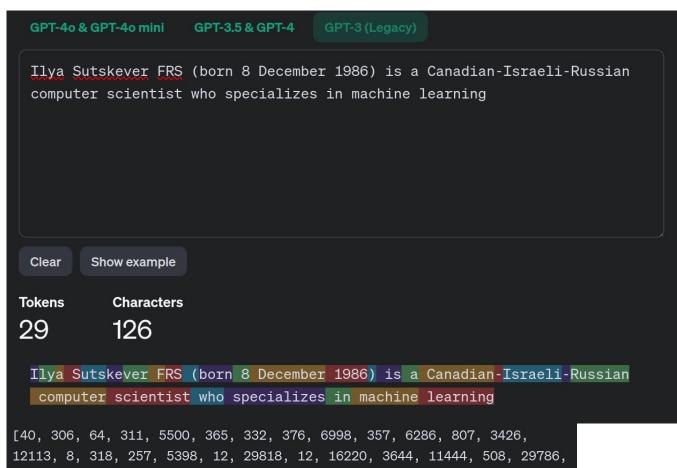
Byte-Pair-Encoding Tokenization: The middle ground

- Tokenize into subwords using BPE
- A **greedy** compression algorithm
- Vocabulary size fixed and specified by us
- No unknown words
 - Always fallback to small subwords

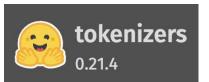
- For k steps:
 - Tokenize the data, taking the longest prefix each time
 - Count the frequency of adjacent token pairs in the data
 - Choose the pair $\langle l,r \rangle$ that occurs most frequently
 - Add the pair to the vocabulary as a new token $\mathscr{V} \leftarrow \mathscr{V} \cup \{lr\}$

BPE - Example

287, 4572, 4673]



HuggingFace tokenizers in Rust



- Official tokenizers library is built in Rust
- Python bindings
- Anyone who ever used a HuggingFace LLM has used this implementation

```
use tokenizers::tokenizer::{Result, Tokenizer};

fn main() -> Result<()> {
    // needs http feature enabled
    let tokenizer = Tokenizer::from_pretrained("bert-base-cased", None)?;

    let encoding = tokenizer.encode("Hey there!", false)?;
    println!("{::?}", encoding.get_tokens());
    Ok(())
}
```


GPT-1, OpenAI, 2018

- Pretrain decoder-only transformer on BPE tokenized text
 - 12 layers, dmodel = 768
 - Books corpus
 - 12 GPUs for a month

 Pretraining for with next-token prediction helps a lot!

 Fine-tune for classification last embedding

Improving Language Understanding by Generative Pre-Training

Alec Radford OpenAI alec@openai.com

Karthik Narasimhan OpenAI karthikn@openai.com Tim Salimans OpenAI tim@openai.com Ilya Sutskever OpenAI ilyasu@openai.com

Abstract

Natural language understanding comprises a wide range of diverse tasks such as textual entailment, question answering, semantic similarity assessment, and document classification. Although large unlabeled text corpora are abundant, labeled data for learning these specific tasks is scarce, making it challenging for discriminatively trained models to perform adequately. We demonstrate that large gains on these tasks can be realized by generative pre-training of a language model on a diverse corpus of unlabeled text, followed by discriminative fine-tuning on each specific task. In contrast to previous approaches, we make use of task-aware input transformations during fine-tuning to achieve effective transfer while requiring minimal changes to the model architecture. We demonstrate the effectiveness of our approach on a wide range of benchmarks for natural language understanding. Our general task-agnostic model outperforms discriminatively trained models that use architectures specifically crafted for each task, significantly improving upon the state of the art in 9 out of the 12 tasks studied. For instance, we achieve absolute improvements of 8.9% on commonsense reasoning (Stories Cloze Test), 5.7% on question answering (RACE), and 1.5% on textual entailment (MultiNLI).

February 14, 2019

Better language models and their implications

View code [↗]

enomenon is finally

ked blue, with some crystals and 'Fashion Police' on the b

search Triangle Park nuclea

ence who had some rea working with the Federal R

king with the Federal Railro mething like a dial

some crystals on top," said

d Lines' on the front and 'Fa

all brack ban the front ban the unded by two peaks of rock olegnish of the war

ur highest prinian,d, stoington and Ashlan,d, Hicks sington and Ashlang a paid ag. She was carrying a paid ag.

t and ince These four-hore to science These four-hore m to be quite commons" A

ed that the creatures 2750 BR www.neroutwes taking far Lines' on the front and

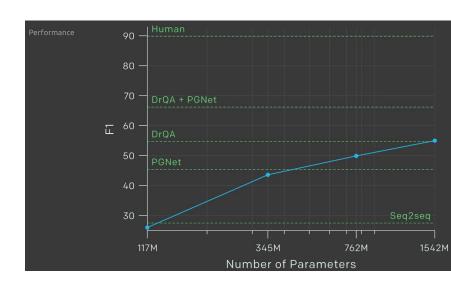
ny people think of the war

in Arr

GPT-2, OpenAI, 2019

- Direct scale-up of GPT-1
- 1.5B parameters
- 40GB of text
 - Web pages that were linked on a reddit posts with at least 3 likes

 More model parameters improves performance



When people started to notice: GPT-3, OpenAI, 2020

- 175B parameters
- 300B tokens
- New capabilities emerged

Model Name	n_{params}	n_{layers}	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}
GPT-3 Medium	350M	24	1024	16	64	0.5M	3.0×10^{-4}
GPT-3 Large	760M	24	1536	16	96	0.5M	2.5×10^{-4}
GPT-3 XL	1.3B	24	2048	24	128	1 M	2.0×10^{-4}
GPT-3 2.7B	2.7B	32	2560	32	80	1 M	1.6×10^{-4}
GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10^{-4}
GPT-3 13B	13.0B	40	5140	40	128	2M	1.0×10^{-4}
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	$0.6 imes 10^{-4}$

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models which we trained. All models were trained for a total of 300 billion tokens.

Language Models are Few-Shot Learners

Tom B. Bro	wn* Benjamin	Mann* Nick	Ryder* Me	lanie Subbiah*
Jared Kaplan [†]	Prafulla Dhariwal	Arvind Neelakantan	Pranav Shyam	Girish Sastry
Amanda Askell	Sandhini Agarwal	Ariel Herbert-Voss	Gretchen Krueger	Tom Henighan
Rewon Child	Aditya Ramesh	Daniel M. Ziegler	Jeffrey Wu	Clemens Winter
Christopher He	sse Mark Chen	Eric Sigler	Mateusz Litwin	Scott Gray
Benjar	nin Chess	Jack Clark	Christopher	Berner
Sam McCan	dlish Alec Ra	adford Ilya S	utskever	Dario Amodei
		OpenAI		

Abstract

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions – something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic,

Scaling law: performance follows a power-trend with compute

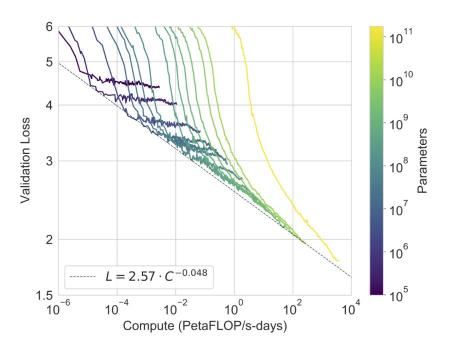
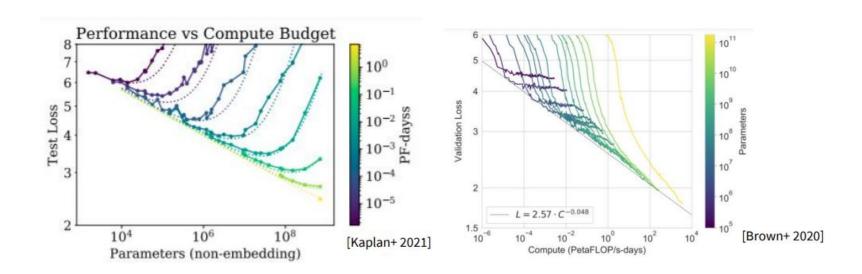
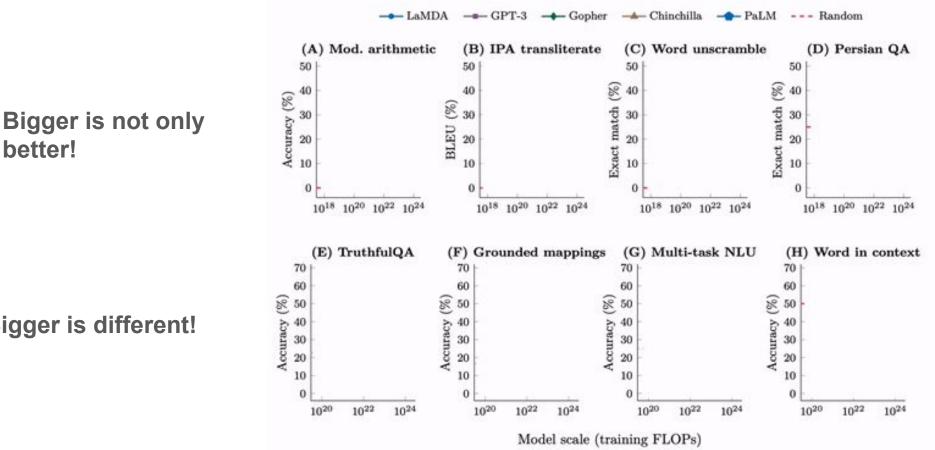


Figure 3.1: Smooth scaling of performance with compute. Performance (measured in terms of cross-entropy validation loss) follows a power-law trend with the amount of compute used for training. The power-law behavior observed in [KMH⁺20] continues for an additional two orders of magnitude with only small deviations from the predicted curve. For this figure, we exclude embedding parameters from compute and parameter counts.

Scaling is all you need!





better!

Bigger is different!

Emergent Abilities of Large Language Models Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph et al. (2022)

1

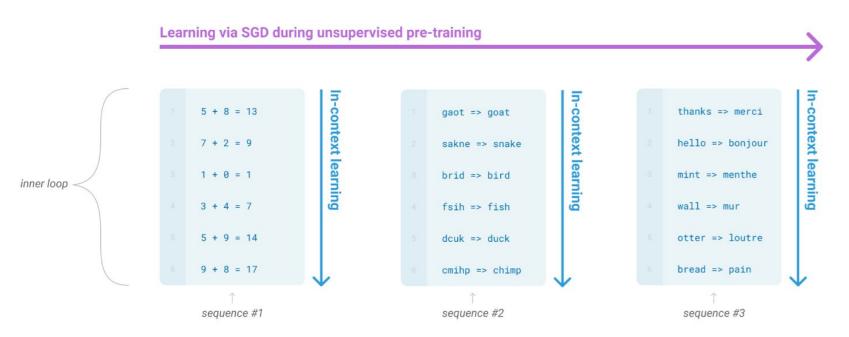
Paradigm shift: In-Context Learning

Don't need to fine-tune directly, put examples directly in the prompt.

- Paradigm shift.
 - Initially, people got data and trained a model on it
 - Then, general pretrained models (i.e., BERT) were made available, but they were useless
 - People still needed to fine-tune.

- Now, fine-tuning became "obsolete",
 - use model as-is, put examples in the prompt

Examples of "in-context-learning" in training data



Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind Neelakantan et al. "Language models are few-shot learners." *Advances in neural information processing systems* 33 (2020): 1877-1901.

"Base-models" don't follow instructions

Prompt	Explain the moon landing to a 6 year old in a few sentences.
Completion	GPT-3 Explain the theory of gravity to a 6 year old.
	Explain the theory of relativity to a 6 year old in a few sentences.
	Explain the big bang theory to a 6 year old.
	Explain evolution to a 6 year old.

InstructGPT, OpenAI, 2022

January 27, 2022

Aligning language models to follow instructions

Read paper ⊅

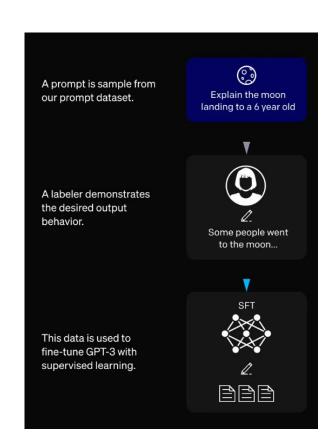
View model card ↗

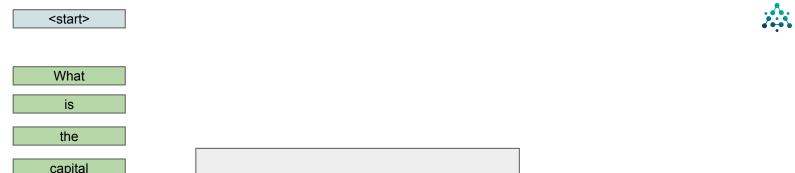
Supervised Fine-Tuning (SFT)

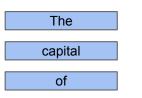
- Instruction-following

 Gather a dataset of instruction and human-generated responses

- Train the model to output the response

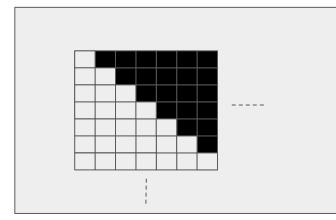




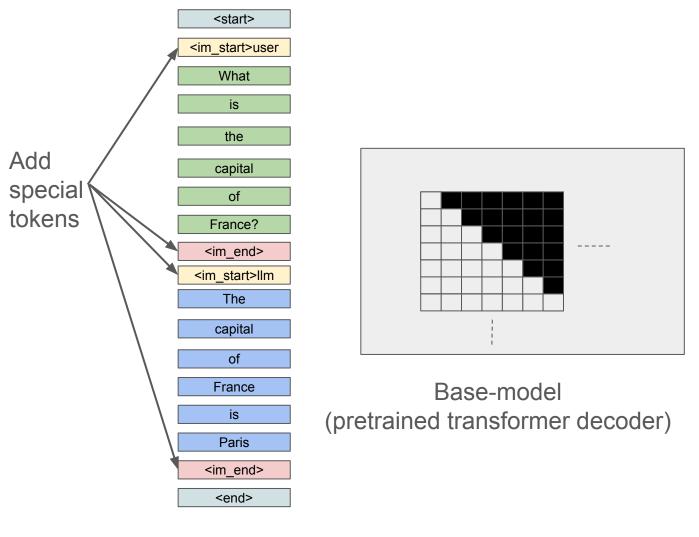


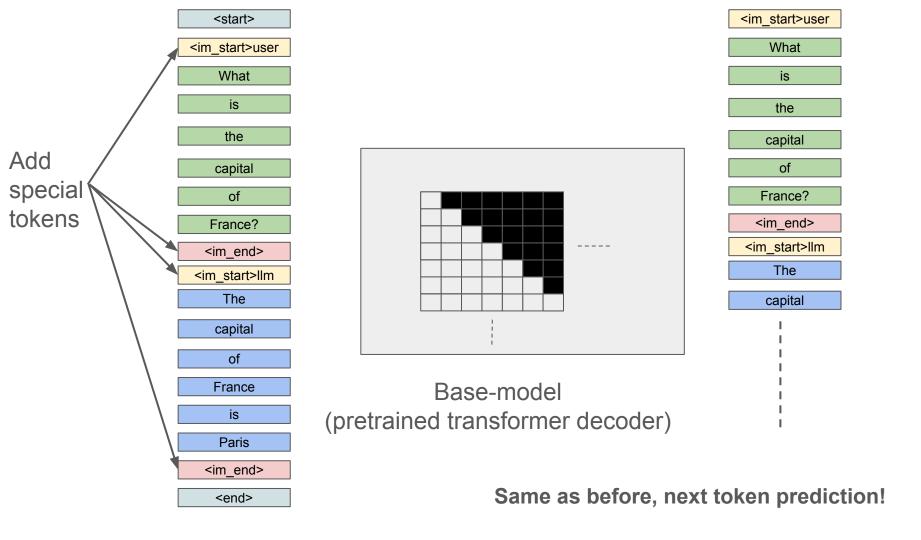
Paris

<end>



Base-model (pretrained transformer decoder)





Now, the model can follow instruction (i.e. chat)

Explain the moon landing to a 6 year old in a few sentences. GPT-3 Explain the theory of gravity to a 6 year old. Explain the theory of relativity to a 6 year old in a few sentences. Explain the big bang theory to a 6 year old. Explain evolution to a 6 year old. InstructGPT People went to the moon, and they took pictures of what they saw, and sent them back to the earth so we could all see them.

Introducing ChatGPT

Try ChatGPT ↗

Download ChatGPT desktop >

Learn about ChatGPT >

We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer followup questions, admit its mistakes, challenge incorrect premises, and reject inappropriate requests.

ChatGPT is a sibling model to <u>InstructGPT</u>, which is trained to follow an instruction in a prompt and provide a detailed response.

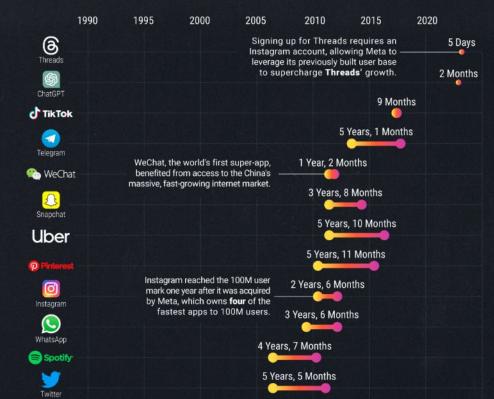
We are excited to introduce ChatGPT to get users' feedback and learn about its strengths and weaknesses. During the research preview, usage of ChatGPT is free. Try it now at chatgpt.com.

ChatGPT, 2022

2 months to reach 100M users

First time a chatbot can
 answer questions, refuse to
 answer, argue with you,
 "understands" you

Meta's newest social media platform, Threads, took less than a week to attract 100 million users to its platform, smashing the previous record of 2 months held by OpenAl's ChatGPT.



Capability prediction on 23 coding problems

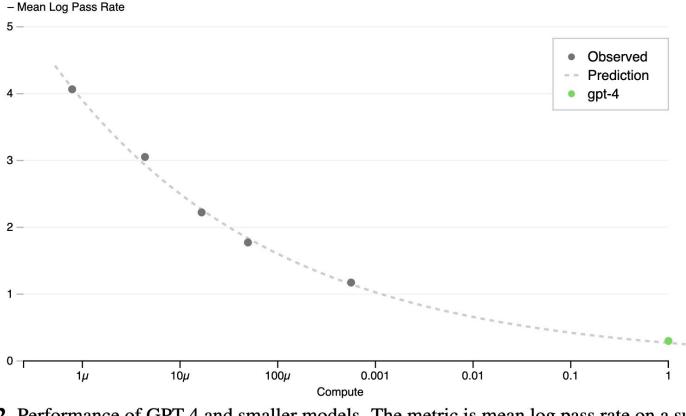
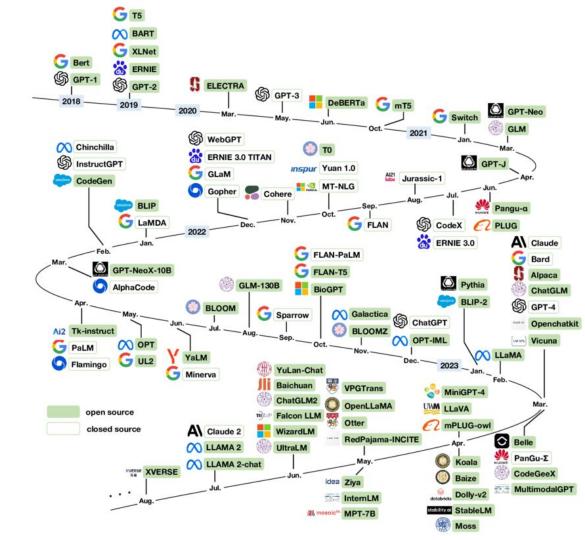


Figure 2. Performance of GPT-4 and smaller models. The metric is mean log pass rate on a subset of the HumanEval dataset. A power law fit to the smaller models (excluding GPT-4) is shown as the dotted line; this fit accurately predicts GPT-4's performance. The x-axis is training compute normalized so that GPT-4 is 1.

Cambrian Explosion of LLMs



Ilya Sutskever - NeurIPS talk 2024

Pre-training as we know it will end

Compute is growing:

- Better hardware
- Better algorithms
- Larger clusters

Data is not growing:

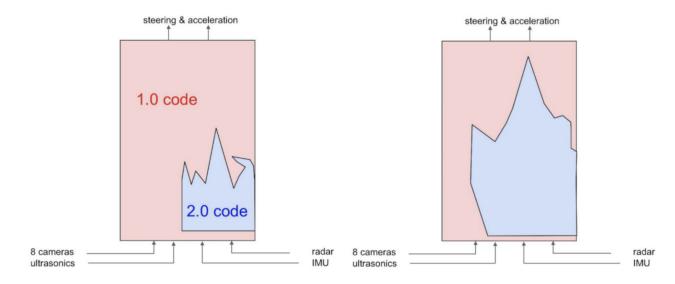
- We have but one internet
- The fossil fuel of Al

Cited by				VIEW	ALL
		All		Since 2	2019
Citations	5810	19		473	3083
h-index		93			88
i10-index	1	40			137
	_	_		79	9500
- 1		ŀ		53	3000
ш	н		ı	26	500
	_				

Recall from last lecture ...

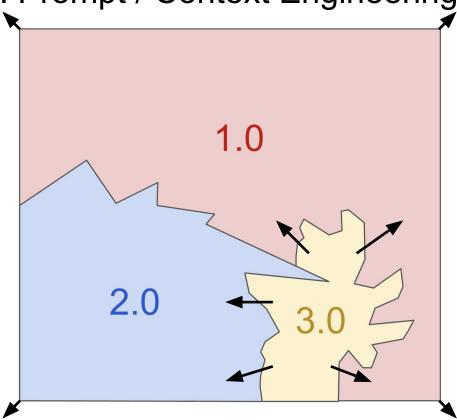
Software 1.0: "classical" software engineering

Software 2.0: (neural network) weights



Source: Andrej Karpathy

Software 3.0: Prompt / Context Engineering



Source: Andrej Karpathy

Test-time compute

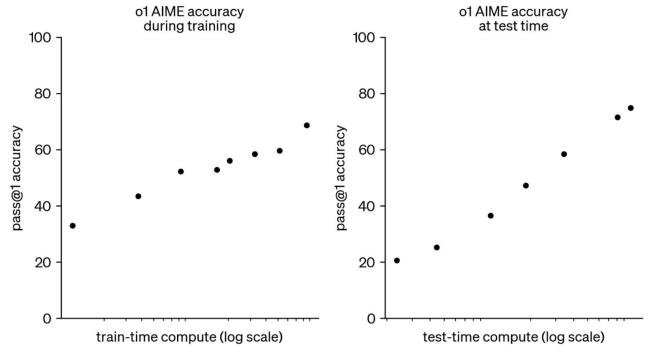
- We can trade test-time compute for model size
- Bigger models can store more knowledge

- But do we really need to store knowledge in the model? What if we can get answers by thinking / reasoning more vs memorizing?

- What if we can retrieve knowledge from an external source on demand?

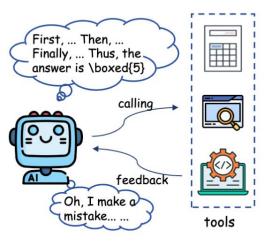
- For on-device LLMs, ideally what we want is a "Small Reasoning Model" (SLM)

We can "trade" training-time compute with test-time compute

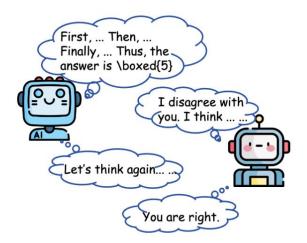


The impact of compute time on OpenAl's o1 model accuracy during training (left) and test time (right), highlighting the effectiveness of Test Time Compute. Credit: OpenAl.

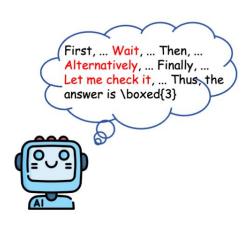
Other types of test-time compute



(a) Tool checking



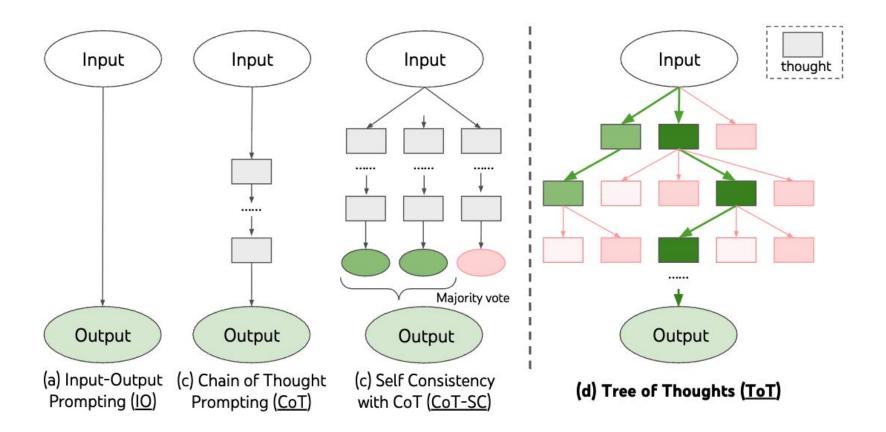
(b) External model evaluation



(c) Self-critique

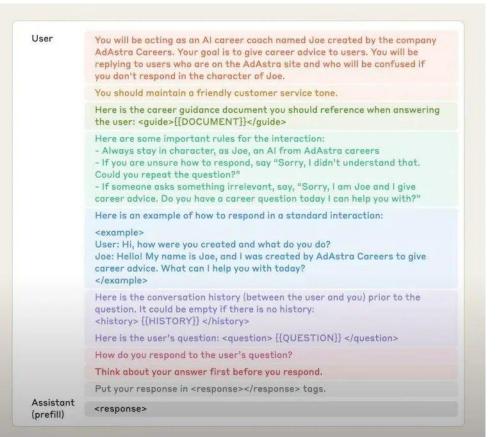
Ji, Yixin, Juntao Li, Hai Ye, Kaixin Wu, Kai Yao, Jia Xu, Linjian Mo, and Min Zhang. "Test-time compute: from system-1 thinking to system-2 thinking." arXiv preprint arXiv:2501.02497 (2025).

Chain of Thoughts / Self-Consistency / Tree of Thoughts



Anthropic recommended prompt structure

Prompt structure 1. Task context 2. Tone context 3. Background data, documents, and images 4. Detailed task description & rules 5. Examples 6. Conversation history 7. Immediate task description or request 8. Thinking step by step / take a deep breath 9. Output formatting 10. Prefilled response (if any)



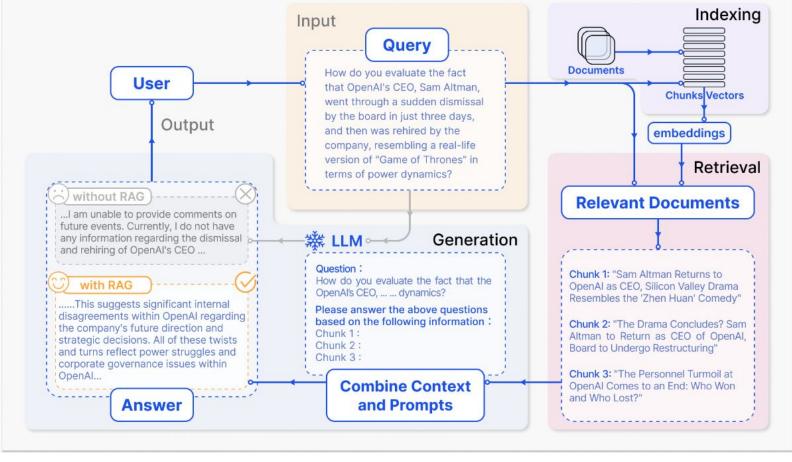
Retrieval-Augmented Generation (RAG)

- From the LLM's perspective, it is impossible to know, for example, an updated documentation for an API, private company documents / policy etc

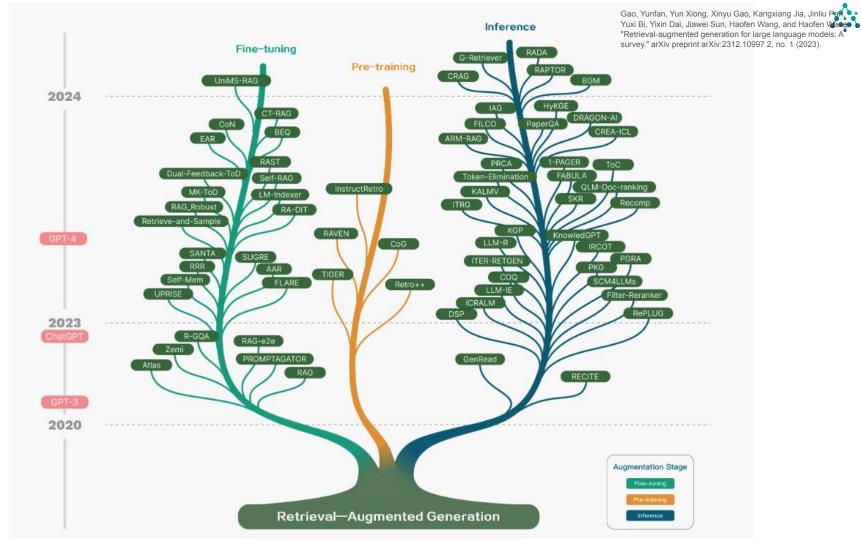
Why should we expect it to know this information?

Open-book and closed-book questions.

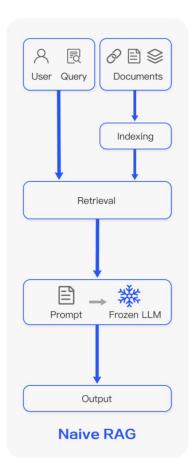
Hope to reduce hallucinations



Gao, Yunfan, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun, Haofen Wang, and Haofen Wang. "Retrieval-augmented generation for large language models: A survey." arXiv preprint arXiv:2312.10997 2, no. 1 (2023).



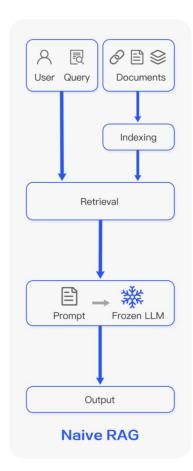
"Agentic" RAG

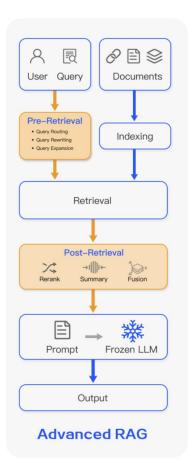


Gao, Yunfan, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yux Brixin Dai, Jiawei Sun, Haofen Wang, and Haofen Wang.

"Retrieval-augmented generation for large language models: A survey." arXiv preprint arXiv:2312.10997 2, no. 1 (2023).

"Agentic" RAG



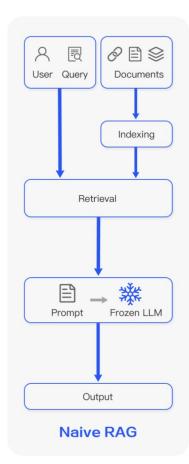


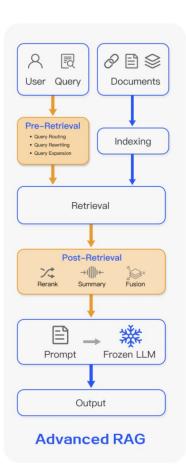
Gao, Yunfan, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yux Yixin Dai, Jiawei Sun, Haofen Wang, and Haofen Wang.
"Retrieval-augmented generation for large language models: A survey." arXiv preprint arXiv:2312.10997 2, no. 1 (2023).

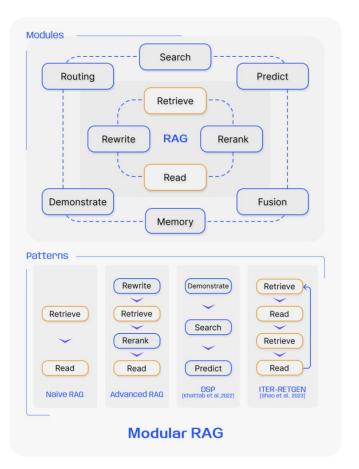
"Agentic" RAG

Gao, Yunfan, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yux Birixin Dai, Jiawei Sun, Haofen Wang, and Haofen Wang.

"Retrieval-augmented generation for large language models: A survey." arXiv preprint arXiv:2312.10997 2, no. 1 (2023).







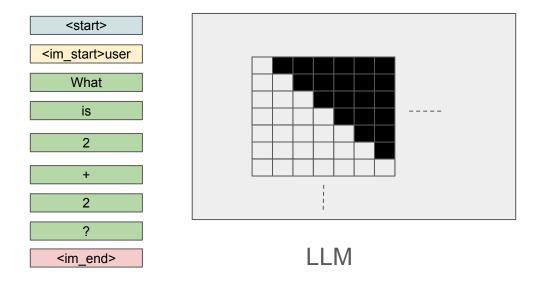
Tool calling

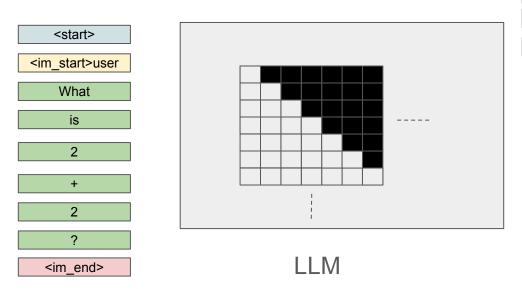
- Sometimes the model cannot perform a task by itself
- Needs to do some external computation

- For example, LLMs are notoriously bad at doing arithmetic
 - Partially due to tokenization

- But there is no need for LLMs to do arithmetic, they can just call a calculator if needed!

<im_start>llm

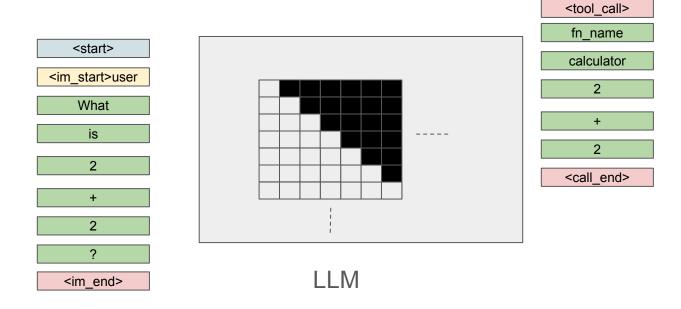


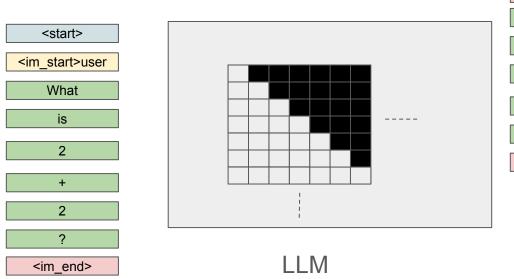


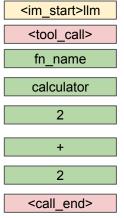
<im_start>llm
<tool_call>
fn_name
calculator

<im_start>llm

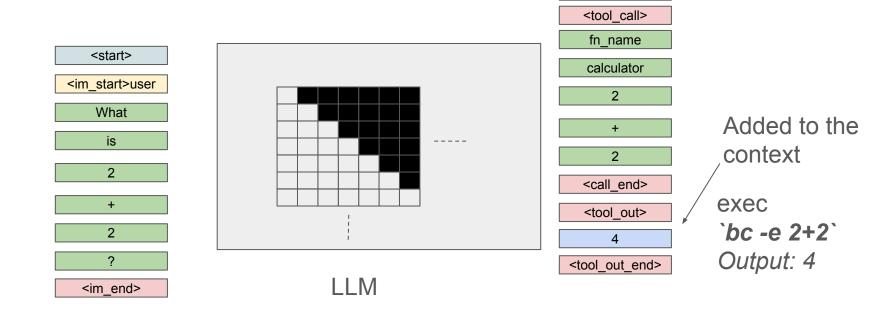
Tool calling - Example



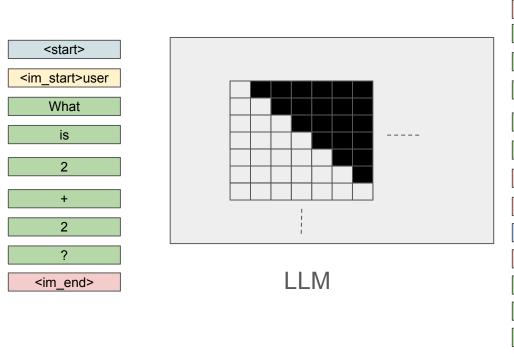


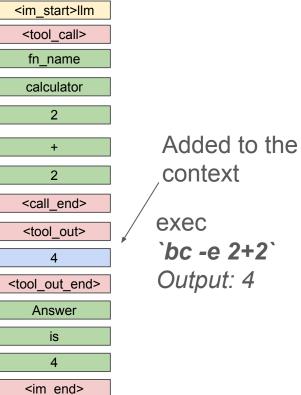


exec
'bc -e 2+2'
Output: 4



<im_start>llm

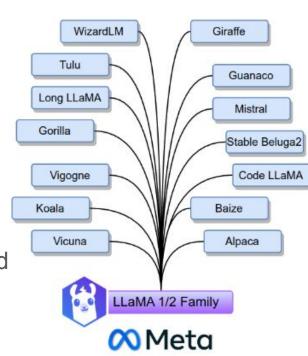




Trends for LLMs for edge

- Move towards open-source models as opposed to proprietary APIs
 - Privacy preserving
 - E.g., Phi, LLaMa, Gemma

- Move towards domain-specific models as opposed to general-purpose ones
 - Fine-tune on specific data
 - Reason more, store less knowledge
 - Model ownership: you own the weights!



Small Language Models are the Future of Agentic AI

Abstract

Large language models (LLMs) are often praised for exhibiting near-human performance on a wide range of tasks and valued for their ability to hold a general conversation. The rise of agentic AI systems is, however, ushering in a mass of applications in which language models perform a small number of specialized tasks repetitively and with little variation.

Here we lay out the position that small language models (SLMs) are sufficiently powerful, inherently more suitable, and necessarily more economical for many invocations in agentic systems, and are therefore the future of agentic AI. Our argumentation is grounded in the current level of capabilities exhibited by SLMs, the common architectures of agentic systems, and the economy of LM deployment. We further argue that in situations where general-purpose conversational abilities

Applications for on-device LLMs

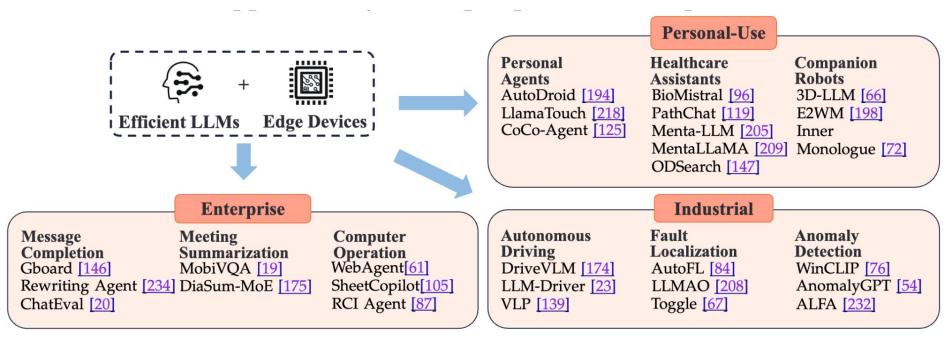


Fig. 11. Illustrations of on-device applications for LLMs.

Llama.cpp

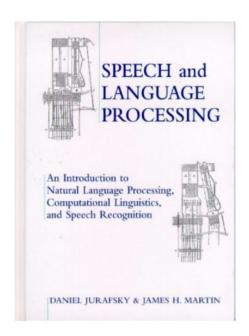
- State-of-the-art performance

Minimal setup

- Compatible with the majority of .gguf quantized models

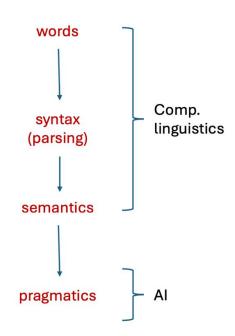
A Perspective on the Field

NLP circa 1999



Summary of Contents

	1 Introduction 1
I	Words 19
	2 Regular Expressions and Automata
	3 Morphology and Finite-State Transducers 57
	4 Computational Phonology and Text-to-Speech 91
	5 Probabilistic Models of Pronunciation and Spelling 139
	6 N-grams
	7 HMMs and Speech Recognition
П	Syntax 283
	8 Word Classes and Part-of-Speech Tagging 285
	9 Context-Free Grammars for English
	10 Parsing with Context-Free Grammars
	11 Features and Unification
	12 Lexicalized and Probabilistic Parsing
	13 Language and Complexity
Ш	Semantics 495
	14 Representing Meaning
	15 Semantic Analysis
	16 Lexical Semantics
	17 Word Sense Disambiguation and Information Retrieval 627
IV	Pragmatics 661
	18 Discourse
	19 Dialogue and Conversational Agents
	20 Generation
	21 Machine Translation
	A Regular Expression Operators
	B The Porter Stemming Algorithm 831
	C C5 and C7 tagsets 835
	D Training HMMs: The Forward-Backward Algorithm 841
Bi	bliography 851
	dex 923
***	725



NLP today has transform(er)ed

Speech and Language Processing An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition Third Edition draft Daniel Jurafsky Stanford University James H. Martin University of Colorado at Boulder Copyright ©2023. All rights reserved. Draft of February 3, 2024. Comments and typos welcome!

Summary of Contents

I	Fur	idamental Algorithms for NLP	ı
	1	Introduction 3	,
	2	Regular Expressions, Text Normalization, Edit Distance	ļ
	3	N-gram Language Models 32	į
	4	Naive Bayes, Text Classification, and Sentiment 60	,
	5	Logistic Regression 81	L
	6	Vector Semantics and Embeddings	;
	7	Neural Networks and Neural Language Models 136	,
	8	Sequence Labeling for Parts of Speech and Named Entities 162	į
	9	RNNs and LSTMs	1
	10	Transformers and Large Language Models	,
	11	Fine-Tuning and Masked Language Models242	į
	12	Prompting, In-Context Learning, and Instruct Tuning263	,
	NIE	D 4	
П		LP Applications 265	
		Machine Translation	
	14	Question Answering and Information Retrieval	ļ
	15	Chatbots & Dialogue Systems	j
	16	Automatic Speech Recognition and Text-to-Speech	1
ш		nnotating Linguistic Structure 365	
		Context-Free Grammars and Constituency Parsing 367	
		Dependency Parsing	
		Information Extraction: Relations, Events, and Time415	
	20	Semantic Role Labeling441	ı
	21	Lexicons for Sentiment, Affect, and Connotation	ĺ
		Coreference Resolution and Entity Linking	
	23	Discourse Coherence511	Ĺ
	Bi	bliography533	,
	Su	bject Index	,

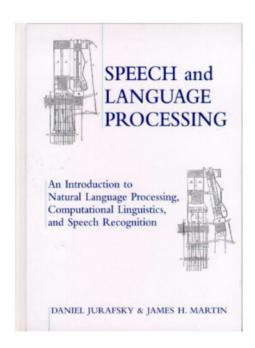
Neural networks, LMs, transformers, and LLMs

Misc. other stuff (including parsing)

3rd edition

The book is now 40% shorter

NLP circa 1999



Summary of Contents 1 Introduction..... (sub)words I Words 2 Regular Expressions and Autom 3 Morphology and Finite-State T Morphology and Finite-State T 57
Computational Phonology of Text to speech 91 5 Probabilistic Model ation and Spelling 139 7 HMMs and St. ech II Syntax syntax (parsing) **LLMs** 17 Word Sense Disambiguation and Information Retrieval . . 627 **Pragmatics** 19 Dialogue and Conversational Agents......715 B The Porter Stemmi Algor pragmatics

1st edition

Workshop Overview

- 1. Part 0: Introduction to the Team & Rust for Edge Al
- 2. Part I: Lecture on Computer Vision
 - a. Main problems in Computer Vision
 - b. What exactly is a neural network? (CNNs / Transformers)
 - c. What exactly is an image embedding?
 - d. Computer vision on the Edge
- 3. Hands-On I: Air-gapped Face recognition on the Pi
- 4. Part II: Lecture on Natural Language Processing
 - a. A bit of history & development of modern LLMs
 - b. How does an LLM work? Tokenizers, pretraining, post-training
 - c. Context Engineering: Tool calling, RAG
 - d. Libraries: tokenizers-rs, llama.cpp
- 5. Hands-On II: Chat with a LLM on Pi

Workshop Overview

- 1. Part 0: Introduction to the Team & Rust for Edge Al
- 2. Part I: Lecture on Computer Vision
 - a. Main problems in Computer Vision
 - b. What exactly is a neural network? (CNNs / Transformers
 - c. What exactly is an image embedding?
 - d. Computer vision on the Edge
- 3. Hands-On I: Air-gapped Face recognition on the P

4. Part II: Lecture on Natural Language Processing

- a. A bit of history & development of modern LLMs
- b. How does an LLM work? Tokenizers, pretraining, post-training
- c. Context Engineering: Tool calling, RAG
- d. Libraries: tokenizers-rs, llama.cpp
- Hands-On II: Chat with a LLM on Pi

Workshop Overview

- 1. Part 0: Introduction to the Team & Rust for Edge Al
- 2. Part I: Lecture on Computer Vision
 - a. Main problems in Computer Vision
 - b. What exactly is a neural network? (CNNs / Transformers)
 - c. What exactly is an image embedding?
 - d. Computer vision on the Edge
- 3. Hands-On I: Air-gapped Face recognition on the P
- 4. Part II: Lecture on Natural Language Processing
 - a. A bit of history & development of modern LLMs
 - b. How does an LLM work? Tokenizers, pretraining, post-training
 - c. Context Engineering: Tool calling, RAG
 - d. Libraries: tokenizers-rs, llama.cpp
- 5. Hands-On II: Chat with a LLM on Pi

Hands-on Overview Chat with an LLM on the PI

- Deploy Gemma 3 using Llama.cpp
- Simple Chat Request
- RAG
- Structured Outputs
- Tool Calling

https://github.com/Wyliodrin/edge-ai-chat-with-llm