
Edge AI Workshop
Lecture II - Language Models

Workshop Overview

1. Part 0: Introduction to the Team & Rust for Edge AI
2. Part I: Lecture on Computer Vision

a. Main problems in Computer Vision
b. What exactly is a neural network? (CNNs / Transformers)
c. What exactly is an image embedding?
d. Computer vision on the Edge

3. Hands-On I: Air-gapped Face recognition on the Pi
4. Part II: Lecture on Natural Language Processing

a. A bit of history & development of modern LLMs
b. How does an LLM work? Tokenizers, pretraining, post-training
c. Context Engineering: Tool calling, RAG
d. Libraries: tokenizers-rs, llama.cpp

5. Hands-On II: Chat with a LLM on Pi

Workshop Overview

1. Part 0: Introduction to the Team & Rust for Edge AI
2. Part I: Lecture on Computer Vision

a. Main problems in Computer Vision
b. What exactly is a neural network? (CNNs / Transformers)
c. What exactly is an image embedding?
d. Computer vision on the Edge

3. Hands-On I: Air-gapped Face recognition on the Pi
4. Part II: Lecture on Natural Language Processing

a. A bit of history & development of modern LLMs
b. How does an LLM work? Tokenizers, pretraining, post-training
c. Context Engineering: Tool calling, RAG
d. Libraries: tokenizers-rs, llama.cpp

5. Hands-On II: Chat with a LLM on Pi

This lecture

- The historical developments of the ideas behind modern language models
- Mostly from OpenAI, since their path was quite clear and their models were highly influential to

the research community

- High level overview of how modern LLMs are trained and fine-tuned

- Prompting methods

- Patterns for deployment on the edge

The old times (pre 2017)

The old times (pre 2017)

● Each problem has its own architecture, with small quirks and problem-specific
design choices

● Both in NLP and Computer Vision

The old times (pre 2017)

● Each problem has its own architecture, with small quirks and problem-specific
design choices

● Both in NLP and Computer Vision
● 2017 - Google published “Attention is all you need”

Now (post 2017)

● Each problem has its own architecture, with small quirks and problem-specific
design choices

● Both in NLP and Computer Vision
● 2017 - Google published “Attention is all you need”

Almost all models are
transformers!

The story of deep learning in a sentence

Old methods, developed in the ‘80s and ‘90s, when scaled up, started to work.

”We think the most benefits will go to whoever has
the biggest computer.”

Greg Brockman, OpenAI’s CTO

“Compute is getting cheaper faster than we are
becoming better researchers”

Hyung Won Chung
Research Scientist at OpenAI

Past

Present = Works

= Doesn’t Work

Why now?

+

+

Seq2Seq, Google, 2014

- Use LSTM as encoder-decoder
- Input is a sequence → output is a sequence
- Solve machine translation → solve language

modelling

- “The success of our simple LSTM-based approach
on MT suggests that it should do well on many other
sequence learning problems, provided they have
enough training data.”

Received the “Test of Time Award” at NeurIPS 2024!

Pretraining on text - Next Token Prediction

- Given some words, what comes word next?

- Examples:
- One, two, three, four … [?]

- The capital of France is … [?]

- 25 + 13 = … [?]

- … [?]

- The solution to the Riemann Hypothesis is … [?]

Pretraining on text - Next Token Prediction

- Given some words, what comes word next?

- Examples:
- One, two, three, four … [?]

- The capital of France is … [?]

- 25 + 13 = … [?]

- … [?]

- The solution to the Riemann Hypothesis is … [?]

Pretraining on text - Next Token Prediction

- Given some words, what comes word next?

- Examples:
- One, two, three, four … [?]

- The capital of France is … [?]

- 25 + 13 = … [?]

- … [?]

- The solution to the Riemann Hypothesis is … [?]

Pretraining on text - Next Token Prediction

- Given some words, what comes word next?

- Examples:
- One, two, three, four … [?]

- The capital of France is … [?]

- 25 + 13 = … [?]

- … [?]

- The solution to the Riemann Hypothesis is … [?]

Pretraining on text - Next Token Prediction

- Given some words, what comes word next?

- Examples:
- One, two, three, four … [?]

- The capital of France is … [?]

- 25 + 13 = … [?]

- … [?]

- The solution to the Riemann Hypothesis is … [?]

A form of inductive reasoning

Pretraining on text - Next Token Prediction

- Given some words, what comes word next?
- Train the model to do this for every word in a sentence.

- [?] is computed as a classification problem over the vocabulary

- The … [?]

- The capital … [?]

- The capital of … [?]

- The capital of France … [?]

- The capital of France is … [?]

A form of (pretext-based) self-supervised learning!

Next Token Prediction

- Simple to describe and implement

- Difficult for the model to do accurately

- For the model to accurately predict what comes next, it needs to “understand”
the world

- I.e., compress the information in the corpus

2015 - Ideas were already in the collective consciousness

The sentiment neuron - OpenAI, 2017

- Train byte-level LSTM to generate
IMDB reviews, unsupervised

- 4 Pascal GPUs for a month

- “we find a single unit which performs
sentiment analysis”

- A particular neuron activates when the
review in positive and deactivates when the
review is negative

The sentiment neuron - OpenAI, 2017

- Train byte-level LSTM to generate
IMDB reviews, unsupervised

- 4 Pascal GPUs for a month

- “we find a single unit which performs
sentiment analysis”

- A particular neuron activates when the
review in positive and deactivates when the
review is negative

The sentiment neuron - OpenAI, 2017

“… our work encourages further research into language modelling as it
demonstrates that the standard language modelling objective

with no modifications

is sufficient to learn high-quality representations …”

Transformer Decoder for Next Token Prediction

<start>
The

capital
of

France
is

Paris

capital
of

France
is

Paris

<end>

Transformer Decoder

<end>

Input

<pred>
<pred>
<pred>
<pred>
<pred>
<pred>

<pred>

CE Loss

CE Loss

CE Loss

CE Loss

CE Loss

CE Loss

CE Loss

Decoder

Transformer Decoder for Next Token Prediction

<start>
The

capital
of

France
is

Paris

capital
of

France
is

Paris

<end>

Transformer Decoder

<end>

Input

<pred>
<pred>
<pred>
<pred>
<pred>
<pred>

<pred>

CE Loss

CE Loss

CE Loss

CE Loss

CE Loss

CE Loss

Decoder

Transformer Decoder for Next Token Prediction

<start>
The

capital
of

France
is

Paris

capital
of

France
is

Paris

<end>

Transformer Decoder

<end>

Input

<pred>
<pred>
<pred>
<pred>
<pred>
<pred>

<pred>

CE Loss

CE Loss

CE Loss

CE Loss

CE Loss

CE Loss

Decoder

The

Target

Transformer Decoder for Next Token Prediction

<start>
The

capital
of

France
is

Paris

capital
of

France
is

Paris

<end>

Transformer Decoder

<end>

Input

<pred>
<pred>
<pred>
<pred>
<pred>
<pred>

<pred>

CE Loss

CE Loss

CE Loss

CE Loss

CE Loss

CE Loss

CE Loss

Decoder

The

Target

Transformer Decoder for Next Token Prediction

<start>
The

capital
of

France
is

Paris

capital
of

France
is

Paris

<end>

Transformer Decoder

<end>

Input

<pred>
<pred>
<pred>
<pred>
<pred>
<pred>

<pred>

CE Loss

CE Loss

CE Loss

CE Loss

CE Loss

CE Loss

CE Loss

Decoder

The

Target

Transformer Decoder for Next Token Prediction

<start>
The

capital
of

France
is

Paris

capital
of

France
is

Paris

<end>

Transformer Decoder

<end>

Input

<pred>
<pred>
<pred>
<pred>
<pred>
<pred>

<pred>

CE Loss

CE Loss

CE Loss

CE Loss

CE Loss

CE Loss

CE Loss

Decoder

The

Target

Transformer Decoder for Next Token Prediction

<start>
The

capital
of

France
is

Paris

capital
of

France
is

Paris

<end>

Transformer Decoder

Input

<pred>
<pred>
<pred>
<pred>
<pred>
<pred>

<pred>

CE Loss

CE Loss

CE Loss

CE Loss

CE Loss

CE Loss

CE Loss

Decoder

The

Target

Decoder

Transformer Decoder for Next Token Prediction

<start>
The

capital
of

France
is

Paris

The
capital

of
France

is
Paris

<end>

Transformer Decoder

Input Target
<pred>
<pred>
<pred>
<pred>
<pred>
<pred>

<pred>

CE Loss

CE Loss

CE Loss

CE Loss

CE Loss

CE Loss

CE Loss

Using a causal attention
mask, we can do this in
a single forward pass!

Seq2Seq is all you need?

- People started to realize that all NLP problems can be cast as text in –> text out
- Example: Text-to-Text Transfer Transformer (T5), 2019

An aside: Tokenization

- Text tokenization = splitting a string into a sequence of tokens

- Most methods so far used either
- Word-level tokenization
- Character-level tokenization

- Both are inadequate
- Splitting by words results in many “out-of-vocabulary“ words

- Misspellings? Many edge cases.
- Splitting text by characters results in very large sequence length which is computationally intractable

Tokenization: Word-level splitting

- What happens when we encounter a word that we have never seen in our
training data?

- Not much we can do
- Assign a special <UNK> token
- Lose a lot of meaning
- Especially hurts in texts/languages with many rare words/entities

- Vocabulary size is small
- 256 entries

- No unknown tokens

- However, sequence is much larger
- Need to learn from scratch how to combine characters into words

Tokenization: Character-level splitting

Byte-Pair-Encoding Tokenization: The middle ground

- Tokenize into subwords using BPE

- A greedy compression algorithm

- Vocabulary size fixed and specified
by us

- No unknown words

- Always fallback to small subwords

BPE - Example

- Official tokenizers library is built in Rust
- Python bindings
- Anyone who ever used a HuggingFace LLM has used this implementation

HuggingFace tokenizers in Rust

GPT-1, OpenAI, 2018

- Pretrain decoder-only transformer on
BPE tokenized text

- 12 layers, dmodel = 768
- Books corpus
- 12 GPUs for a month

- Pretraining for with next-token
prediction helps a lot!

- Fine-tune for classification last
embedding

GPT-2, OpenAI, 2019

- Direct scale-up of GPT-1
- 1.5B parameters
- 40GB of text

- Web pages that were linked on a reddit
posts with at least 3 likes

- More model parameters improves
performance

When people started to notice: GPT-3, OpenAI, 2020

- 175B parameters
- 300B tokens
- New capabilities emerged

Scaling law: performance follows a power-trend with compute

Scaling is all you need!

Emergent Abilities of Large Language Models
Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph et al. (2022)

Bigger is not only
better!

Bigger is different!

https://arxiv.org/abs/2206.07682

Paradigm shift: In-Context Learning

- Don’t need to fine-tune directly, put examples directly in the prompt.

- Paradigm shift.
- Initially, people got data and trained a model on it
- Then, general pretrained models (i.e., BERT) were made available, but they were useless

- People still needed to fine-tune.

- Now, fine-tuning became “obsolete”,
- use model as-is, put examples in the prompt

Examples of “in-context-learning” in training data

Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind Neelakantan et al. "Language models are
few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901.

“Base-models” don’t follow instructions

InstructGPT, OpenAI, 2022

Supervised Fine-Tuning (SFT)

- Instruction-following

- Gather a dataset of instruction and
human-generated responses

- Train the model to output the
response

The

capital

of

France

is

Paris

What

is

the

capital

of

France?

<start>

<end>

Base-model
(pretrained transformer decoder)

The

capital

of

France

is

Paris

What

is

the

capital

of

France?

<start>

<im_start>user

<im_end>

<im_start>llm

<im_end>

<end>

Base-model
(pretrained transformer decoder)

Add
special
tokens

The

capital

of

France

is

Paris

What

is

the

capital

of

France?

<start>

<im_start>user

<im_end>

<im_start>llm

<im_end>

<end>

Base-model
(pretrained transformer decoder)

The

capital

What

is

the

capital

of

France?

<im_start>user

<im_end>

<im_start>llm

Same as before, next token prediction!

Add
special
tokens

Now, the model can follow instruction (i.e. chat)

ChatGPT, 2022

- 2 months to reach 100M
users

- First time a chatbot can
answer questions, refuse to
answer, argue with you,
“understands” you

Cambrian Explosion
of LLMs

Ilya Sutskever - NeurIPS talk 2024

Recall from last lecture …

Source: Andrej Karpathy

Software 1.0: “classical” software engineering

Software 2.0: (neural network) weights

Software 3.0: Prompt / Context Engineering

Source: Andrej Karpathy

Test-time compute

- We can trade test-time compute for model size
- Bigger models can store more knowledge

- But do we really need to store knowledge in the model? What if we can get answers
by thinking / reasoning more vs memorizing?

- What if we can retrieve knowledge from an external source on demand?

- For on-device LLMs, ideally what we want is a “Small Reasoning Model” (SLM)

We can “trade” training-time compute with test-time
compute

Other types of test-time compute

Ji, Yixin, Juntao Li, Hai Ye, Kaixin Wu, Kai Yao, Jia Xu, Linjian Mo, and Min Zhang. "Test-time compute: from system-1 thinking to
system-2 thinking." arXiv preprint arXiv:2501.02497 (2025).

Chain of Thoughts / Self-Consistency / Tree of Thoughts

Anthropic recommended prompt structure

Retrieval-Augmented Generation (RAG)

- From the LLM’s perspective, it is impossible to know, for example, an updated
documentation for an API, private company documents / policy etc

- Why should we expect it to know this information?

- Open-book and closed-book questions.

- Hope to reduce hallucinations

Gao, Yunfan, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun, Haofen Wang, and Haofen Wang.
"Retrieval-augmented generation for large language models: A survey." arXiv preprint arXiv:2312.10997 2, no. 1 (2023).

Gao, Yunfan, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan,
Yuxi Bi, Yixin Dai, Jiawei Sun, Haofen Wang, and Haofen Wang.
"Retrieval-augmented generation for large language models: A
survey." arXiv preprint arXiv:2312.10997 2, no. 1 (2023).

“Agentic” RAG
Gao, Yunfan, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi,
Yixin Dai, Jiawei Sun, Haofen Wang, and Haofen Wang.
"Retrieval-augmented generation for large language models: A survey."
arXiv preprint arXiv:2312.10997 2, no. 1 (2023).

“Agentic” RAG
Gao, Yunfan, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi,
Yixin Dai, Jiawei Sun, Haofen Wang, and Haofen Wang.
"Retrieval-augmented generation for large language models: A survey."
arXiv preprint arXiv:2312.10997 2, no. 1 (2023).

“Agentic” RAG
Gao, Yunfan, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi,
Yixin Dai, Jiawei Sun, Haofen Wang, and Haofen Wang.
"Retrieval-augmented generation for large language models: A survey."
arXiv preprint arXiv:2312.10997 2, no. 1 (2023).

Tool calling

- Sometimes the model cannot perform a task by itself
- Needs to do some external computation

- For example, LLMs are notoriously bad at doing arithmetic
- Partially due to tokenization

- But there is no need for LLMs to do arithmetic, they can just call a calculator if
needed!

What

is

2

+

2

?

<start>

<im_start>user

<im_end>

<im_start>llm

LLM

<tool_call>

fn_name

calculator

2

+

2

<call_end>

exec
`bc -e 2+2`
Output: 4

<tool_out>

<tool_out>

4

Answer

is

4

<im_end>

Tool calling - Example

What

is

2

+

2

?

<start>

<im_start>user

<im_end>

<im_start>llm

LLM

<tool_call>

fn_name

calculator

2

+

2

<call_end>

exec
`bc -e 2+2`
Output: 4

<tool_out>

<tool_out>

4

Answer

is

4

<im_end>

Tool calling - Example

What

is

2

+

2

?

<start>

<im_start>user

<im_end>

<im_start>llm

LLM

<tool_call>

fn_name

calculator

2

+

2

<call_end>

exec
`bc -e 2+2`
Output: 4

<tool_out>

<tool_out>

4

Answer

is

4

<im_end>

Tool calling - Example

What

is

2

+

2

?

<start>

<im_start>user

<im_end>

<im_start>llm

LLM

<tool_call>

fn_name

calculator

2

+

2

<call_end>

exec
`bc -e 2+2`
Output: 4

<tool_out>

<tool_out>

4

Answer

is

4

<im_end>

Tool calling - Example

What

is

2

+

2

?

<start>

<im_start>user

<im_end>

<im_start>llm

LLM

<tool_call>

fn_name

calculator

2

+

2

exec
`bc -e 2+2`
Output: 4

<tool_out>

<tool_out_end>

4

Tool calling - Example

Added to the
context

<call_end>

What

is

2

+

2

?

<start>

<im_start>user

<im_end>

<im_start>llm

LLM

<tool_call>

fn_name

calculator

2

+

2

<call_end>

exec
`bc -e 2+2`
Output: 4

<tool_out>

<tool_out_end>

4

Answer

is

4

<im_end>

Tool calling - Example

Added to the
context

<tool_call>

<tool_out>

<call_end>

<tool_out_end>
“Special tokens”

Trends for LLMs for edge

- Move towards open-source models as opposed to
proprietary APIs

- Privacy preserving
- E.g., Phi, LLaMa, Gemma

- Move towards domain-specific models as opposed
to general-purpose ones

- Fine-tune on specific data
- Reason more, store less knowledge
- Model ownership: you own the weights!

Applications for on-device LLMs

Zheng, Yue, et al. "A review on edge large language models: Design, execution, and applications." ACM Computing Surveys 57.8 (2025): 1-35.

Llama.cpp

- State-of-the-art performance

- Minimal setup

- Compatible with the majority of .gguf quantized models

A Perspective on the Field

Workshop Overview

1. Part 0: Introduction to the Team & Rust for Edge AI
2. Part I: Lecture on Computer Vision

a. Main problems in Computer Vision
b. What exactly is a neural network? (CNNs / Transformers)
c. What exactly is an image embedding?
d. Computer vision on the Edge

3. Hands-On I: Air-gapped Face recognition on the Pi
4. Part II: Lecture on Natural Language Processing

a. A bit of history & development of modern LLMs
b. How does an LLM work? Tokenizers, pretraining, post-training
c. Context Engineering: Tool calling, RAG
d. Libraries: tokenizers-rs, llama.cpp

5. Hands-On II: Chat with a LLM on Pi

Workshop Overview

1. Part 0: Introduction to the Team & Rust for Edge AI
2. Part I: Lecture on Computer Vision

a. Main problems in Computer Vision
b. What exactly is a neural network? (CNNs / Transformers)
c. What exactly is an image embedding?
d. Computer vision on the Edge

3. Hands-On I: Air-gapped Face recognition on the Pi
4. Part II: Lecture on Natural Language Processing

a. A bit of history & development of modern LLMs
b. How does an LLM work? Tokenizers, pretraining, post-training
c. Context Engineering: Tool calling, RAG
d. Libraries: tokenizers-rs, llama.cpp

5. Hands-On II: Chat with a LLM on Pi

Workshop Overview

1. Part 0: Introduction to the Team & Rust for Edge AI
2. Part I: Lecture on Computer Vision

a. Main problems in Computer Vision
b. What exactly is a neural network? (CNNs / Transformers)
c. What exactly is an image embedding?
d. Computer vision on the Edge

3. Hands-On I: Air-gapped Face recognition on the Pi
4. Part II: Lecture on Natural Language Processing

a. A bit of history & development of modern LLMs
b. How does an LLM work? Tokenizers, pretraining, post-training
c. Context Engineering: Tool calling, RAG
d. Libraries: tokenizers-rs, llama.cpp

5. Hands-On II: Chat with a LLM on Pi

Hands-on Overview
Chat with an LLM on the PI

- Deploy Gemma 3 using Llama.cpp
- Simple Chat Request
- RAG
- Structured Outputs
- Tool Calling

https://github.com/Wyliodrin/edge-ai-chat-with-llm

