
Edge AI Workshop
Lecture I - Computer Vision on the Edge



Overview

- Give a high-level overview of the Computer Vision field
- What are the current paradigms in the field?

- What are image embeddings and how are the useful?
- What is the role of Rust in the current Computer Vision landscape?



The Bigger Picture



Software 2.0

Software 1.0 = human-engineered source code (e.g. some .cpp files) is compiled 
into a binary that does useful work. 

Software 2.0

source code is 

- the dataset that defines the desirable behavior
- the neural net architecture that gives the rough skeleton of the code,
- many details (the weights) to be filled in



Software 2.0 starts to eat away at 1.0 codebases

Source: Andrej Karpathy



Analogy with Software 1.0

Compiler

Source Code Executable file
That does useful things
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That does useful things

Validation 
Benchmarks





Why is Edge AI appealing?

- Privacy preserving
- no data leaves the device (hopefully)

- Decentralized
- each device is independent / no need for a central server

- Scalable to billions of devices

- Enables more sophisticated methods of training
- Federated learning - each device learns on its own data and then shares its knowledge



Why is EdgeAI hard?

- Small scale means smaller capability for models
- Latency & compute (real-time inference is hard)
- Low power consumption

- Edge devices are resource-constrained and need safe and efficient code
- Rust is uniquely positioned to handle these requirements



Computer Vision on the Edge - Robotics



Computer Vision on the Edge - Mobile



Computer Vision on the Edge - Autonomous Driving



Computer Vision on the Edge - Object Detection



Computer Vision on the Edge - Drones



Image Classification - Core Task in CV

Dog

Cat

Mouse



What does a Computer see?

An image is a matrix with values between 
[0-255] with 3 channels (RGB)



Minor changes to the image - all pixels differ



Cats vary in a lot of ways



Other challenges

Occlusion Illumination Deformation



Naive approach

Ears
Whiskers

Eyes

?

Cat



Data-Driven approach

1. Collect and label dataset

2. Train classifier

3. Predict on new images



(Fully Connected) Neural Network







Fully Connected Neural Network

Problems:

● Spatial information is lost

● A lot of parameters



Using Spatial Structure

Fully connected Locally connected



Convolution is applied to all channels of an image



Convolution output



Convolution works with any number of channels



Modern CNN architectures (backbones)



Computer Vision Tasks



Semantic segmentation: Label each pixel with a class



SegNet



U-Net: Convolutional Networks for Biomedical Image 
Segmentation



Vision Transformers (ViTs)

- Different than CNNs

- Split image into non-overlapping 
patches

- Process them like they are 
“words”

- O(n^2) complexity

- n = number of patches

- Usually, can scale better with data 
than CNNs



Transformers are general token-processors

- Anything can be thought as a sequence of tokens
- With some built-in order, or not

- For text: each character / subword / word is a token. 
- For images: image patches? Pixels? 
- For videos: ??
- For sound waves: ??



Transformers are general token-processors

- Input data –> tokenizer –> transformer

- Most of the time, to solve a specific problem, we need to work on a custom tokenizer and 
position embeddings

- e.g. how to tokenize videos / movement / audio?
- e.g. how to encode time as positional embedding? How to handle multi-modal data?

Token-1

Token-2

Token-3

Token-n

Data Tokenizer Transformer 
Encoder



ViViT: A Video Vision Transformer

How would a tokenizer look 
for videos?



ViViT: A Video Vision Transformer



Audio Spectrogram Transformer

● Transform audio waves into 
spectrograms

● Spectrograms kind of look like images
○ Let’s just use the same thing as in ViTs
○ Patchify and send to Transformer encoder



GaitFormer (Cosma and Rădoi, 2022)

● How can we process skeleton 
sequences?

● A skeleton sequence is 
represented by a Tx18x3 matrix

○ T frames, 18 joints, 3 coordinates

● Basic idea: 
● Flatten each skeleton and 

send the sequence to the 
transformer encoder



http://www.youtube.com/watch?v=4QmQHZeJXF8&t=205


When to pick what?

- ViTs have better global reasoning and multi-tasking
- Might not be so appropriate
- O(n^2) time and memory complexity

- CNN are fast and work best for edge
- Many optimized variants

- MobileNet, SqueezeNet, ConvNext-tiny, etc.





Let’s talk about “embeddings”



Deep Learning = Representation Learning



Semantic Representation = Similarity

f( ) =,



Semantic Representation = Similarity

f( ) =,

f( ) =,



Embeddings are like hashes

- Two hashes are near each other means the semantic content is the same

- The embeddings of two pictures of cats should be similar, regardless of 
surface level differences 

- Really, an embedding is just a vector of floats with certain properties
- Usually 64 - 4096 dimensional vector (depending on the model)

1.3 0.3 1.1 0.9 0.8 0.7 0.1 0.4 0.8 1.5 1.6 2.3 4.2



Face Authentication with face embeddings

Embedding 
Model

1.3 0.3 1.1 0.9 0.8 0.7

1.3 0.3 1.1 0.9 0.8 0.7

1.3 0.3 1.1 0.9 0.8 0.7

Far apart = different person

Close = same person



Face Authentication with face embeddings

Embedding 
Model

1.3 0.3 1.1 0.9 0.8 0.7

1.3 0.3 1.1 0.9 0.8 0.7

1.3 0.3 1.1 0.9 0.8 0.7

Close = same person

“Closeness” = dot product similarity

Far apart = different person



How are these embeddings learned by a model? 



Components of an ML Application

Model (Neural Network) + Training Data + Hardware (GPU / TPU)



Components of an ML Application

Model (Neural Network) + Training Data + Hardware (GPU / TPU)

Fancy DL Architectures
Available (timm, torchvision, 🤗HuggingFace etc.)



Components of an ML Application

Model (Neural Network) + Training Data + Hardware (GPU / TPU)

Usually available
Google Colab / cloud, gaming 

rigs, university cluster etc.



Components of an ML Application

Model (Neural Network) + Training Data + Hardware (GPU / TPU)

????????? The most important aspect
This is where supervision is 
performed



Model differences are overrated

Supervision differences are underrated.



Weakly-

Types of “supervision”



Ideal world! Not really happening Closer to the real world

Weakly-

Types of “supervision”



Yann LeCun



Pretext-based Self-Supervised Learning

Main Idea: 
- Invent a task from the data and force the model to solve it

- Solving the task = understanding the data



How is this image rotated?



How is this image rotated?

How do you know?



Self-Supervised Learning: Predicting Rotations

Predict rotations

Hypothesis: a model could recognize the correct rotation of an object only if it has the “visual 
commonsense” of what the object should look like unperturbed.

0 degrees 270 degrees 180 degrees 90 degrees



Self-Supervised Learning: Image Colorization

Image Colorization

Hypothesis: a model could only colorize an image if it has the “visual commonsense” of what 
the object should look like.



Self-Supervised Learning: Predicting Relative Patches

Hypothesis: a model could only predict relative patches from an image if it has the “visual 
commonsense” of what the global object should look like.



Masked-Image Modelling

- Mask some parts of the image

- Predict the masked parts given the visible parts



Models can cheat!

i.e. find shortcuts to solve the 
task, don’t understand the 
overall semantics of the data

Spurious correlations



Example: CNNs are biased towards texture



Question: Is it a good pretext-task to try to predict 
whether an image is mirrored or not?



Question: Which images are mirrored?



Question: Which images are mirrored?





Learned representations may be tied to a specific pretext task! 

Can we come up with a more general pretext task?



Contrastive Learning

Attract

Main Idea:

Multiple views of the same 
image should have the same 
representations



Contrastive Learning

Attract

Main Idea:

Multiple views of the same 
image should have the same 
representations

Problem: A model outputting a vector of 
zeros satisfies this condition 

(embedding collapse)



Contrastive Learning

Attract

Repel

Solution: Attract representations from the 
same image, and repel representation 
from a different image



How can models cheat in this task?

Attract

Repel



How can models cheat in this task?

Attract

Repel

Models can just look at the color histogram!



How can models cheat in this task?

Attract

Repel

Important! Use ColorJitter!



SimCLR: A Simple Framework for Contrastive Learning



Data Augmentation is Critical

Programmatically generate new variations 
of an input

- Increase data variation
- Cheap + fast

Requirement: Must not change the underlying class 
(an augmented cat must remain a cat)



Data Augmentation is Critical



Data Augmentation is Critical

- Common data augmentations
- Random Crops
- Horizontal Flips
- Vertical Flips
- Rotations
- Color Jitter
- Brightness / Contrast
- Random Blur
- Cutout
- etc



Other Augmentations - Image Mixup / CutMix

Mixup



Other Augmentations - Image Mixup / CutMix

Mixup

CutMix



Other Augmentations - Image Mixup / CutMix

Mixup

CutMix

Attentive CutMix



https://docs.google.com/file/d/1W3owuA6PKlPBHLpkYSjPEGzl43A_U595/preview


DINOv3 Training Pipeline

- Similar pattern:
- Train big model on large-scale data
- Distill knowledge into smaller models



DINOv3 Training Pipeline

- Similar pattern:
- Train big model on large-scale data
- Distill knowledge into smaller models



Observation: Unsupervised Learning is ill-posed

- Old dream of ML
- Does not really show up at small scale

- Optimize for one objective (i.e., contrastive loss)
- But we care about another objective! (e.g., classification accuracy)



The Platonic Representation 
Hypothesis

- With enough scale / data, models 
capture a common representation of 
reality, irrespective of objective

- Intuitively, because models compress 
the data in a similar way

- No time for this now; it’s a rabbit hole 



Huggingface - The Github for AI Models / 
Datasets



Huggingface - The Github for AI Models / 
Datasets







Tasks in Computer Vision

- Scene text reading (OCR)
- Object recognition (classification)
- Object delineation (detection, segmentation)
- Chart / infographic parsing
- Document parsing
- Instrument reading
- Place recognition
- Action recognition
- Face recognition
- World knowledge
- Visual question answering



Tasks in Computer Vision

- Scene text reading (OCR)
- Object recognition (classification)
- Object delineation (detection, segmentation)
- Chart / infographic parsing
- Document parsing
- Instrument reading
- Place recognition
- Action recognition
- Face recognition
- World knowledge
- Visual question answering

Fake Tasks

Real Tasks



Workshop Overview

1. Part 0: Introduction to the Team & Rust for Edge AI
2. Part I: Lecture on Computer Vision

a. Main problems in Computer Vision
b. What exactly is a neural network? (CNNs / Transformers)
c. What exactly is an image embedding?
d. Computer vision on the Edge

3. Hands-On I: Air-gapped Face recognition on the Pi 
4. Part II: Lecture on Natural Language Processing

a. A bit of history & development of modern LLMs
b. How does an LLM work? Tokenizers, pretraining, post-training
c. Context Engineering: Tool calling, RAG
d. Libraries: tokenizers-rs, llama.cpp

5. Hands-On II: Chat with a LLM on Pi
6. Hands-On III: Knight Rider
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Connections

Laptop

WiFi: RustConf2025_AI / edgeaiworkshop

Raspberry Pi

Start the Pi (plug the SD Card and the power adapter)

Scan the QR Code for the Raspberry Pi’s IP address

Login: pi / edgeaiworkshop

Use VSCode or Zed (Linux or macOS) Remote Connection



- Use candle to instantiate and run inference for a ConvNext model
- Compute image embeddings and implement a basic vector storage
- Integrate in a POC application for real time user register and login

https://github.com/Wyliodrin/edge-ai-face-auth

  register
   login

CLI

Hands-on Overview
Privacy-Preserving, Local-Device, Facial Recognition




