
Edge AI Workshop
Lecture I - Computer Vision on the Edge

Overview

- Give a high-level overview of the Computer Vision field
- What are the current paradigms in the field?

- What are image embeddings and how are the useful?
- What is the role of Rust in the current Computer Vision landscape?

The Bigger Picture

Software 2.0

Software 1.0 = human-engineered source code (e.g. some .cpp files) is compiled
into a binary that does useful work.

Software 2.0

source code is

- the dataset that defines the desirable behavior
- the neural net architecture that gives the rough skeleton of the code,
- many details (the weights) to be filled in

Software 2.0 starts to eat away at 1.0 codebases

Source: Andrej Karpathy

Analogy with Software 1.0

Compiler

Source Code Executable file
That does useful things

Analogy with Software 1.0

Compiler

Source Code Executable file
That does useful things

Dataset

Architecture
+

Training Code

Trained Model
That does useful things

Validation
Benchmarks

Why is Edge AI appealing?

- Privacy preserving
- no data leaves the device (hopefully)

- Decentralized
- each device is independent / no need for a central server

- Scalable to billions of devices

- Enables more sophisticated methods of training
- Federated learning - each device learns on its own data and then shares its knowledge

Why is EdgeAI hard?

- Small scale means smaller capability for models
- Latency & compute (real-time inference is hard)
- Low power consumption

- Edge devices are resource-constrained and need safe and efficient code
- Rust is uniquely positioned to handle these requirements

Computer Vision on the Edge - Robotics

Computer Vision on the Edge - Mobile

Computer Vision on the Edge - Autonomous Driving

Computer Vision on the Edge - Object Detection

Computer Vision on the Edge - Drones

Image Classification - Core Task in CV

Dog

Cat

Mouse

What does a Computer see?

An image is a matrix with values between
[0-255] with 3 channels (RGB)

Minor changes to the image - all pixels differ

Cats vary in a lot of ways

Other challenges

Occlusion Illumination Deformation

Naive approach

Ears
Whiskers

Eyes

?

Cat

Data-Driven approach

1. Collect and label dataset

2. Train classifier

3. Predict on new images

(Fully Connected) Neural Network

Fully Connected Neural Network

Problems:

● Spatial information is lost

● A lot of parameters

Using Spatial Structure

Fully connected Locally connected

Convolution is applied to all channels of an image

Convolution output

Convolution works with any number of channels

Modern CNN architectures (backbones)

Computer Vision Tasks

Semantic segmentation: Label each pixel with a class

SegNet

U-Net: Convolutional Networks for Biomedical Image
Segmentation

Vision Transformers (ViTs)

- Different than CNNs

- Split image into non-overlapping
patches

- Process them like they are
“words”

- O(n^2) complexity

- n = number of patches

- Usually, can scale better with data
than CNNs

Transformers are general token-processors

- Anything can be thought as a sequence of tokens
- With some built-in order, or not

- For text: each character / subword / word is a token.
- For images: image patches? Pixels?
- For videos: ??
- For sound waves: ??

Transformers are general token-processors

- Input data –> tokenizer –> transformer

- Most of the time, to solve a specific problem, we need to work on a custom tokenizer and
position embeddings

- e.g. how to tokenize videos / movement / audio?
- e.g. how to encode time as positional embedding? How to handle multi-modal data?

Token-1

Token-2

Token-3

Token-n

Data Tokenizer Transformer
Encoder

ViViT: A Video Vision Transformer

How would a tokenizer look
for videos?

ViViT: A Video Vision Transformer

Audio Spectrogram Transformer

● Transform audio waves into
spectrograms

● Spectrograms kind of look like images
○ Let’s just use the same thing as in ViTs
○ Patchify and send to Transformer encoder

GaitFormer (Cosma and Rădoi, 2022)

● How can we process skeleton
sequences?

● A skeleton sequence is
represented by a Tx18x3 matrix

○ T frames, 18 joints, 3 coordinates

● Basic idea:
● Flatten each skeleton and

send the sequence to the
transformer encoder

http://www.youtube.com/watch?v=4QmQHZeJXF8&t=205

When to pick what?

- ViTs have better global reasoning and multi-tasking
- Might not be so appropriate
- O(n^2) time and memory complexity

- CNN are fast and work best for edge
- Many optimized variants

- MobileNet, SqueezeNet, ConvNext-tiny, etc.

Let’s talk about “embeddings”

Deep Learning = Representation Learning

Semantic Representation = Similarity

f() =,

Semantic Representation = Similarity

f() =,

f() =,

Embeddings are like hashes

- Two hashes are near each other means the semantic content is the same

- The embeddings of two pictures of cats should be similar, regardless of
surface level differences

- Really, an embedding is just a vector of floats with certain properties
- Usually 64 - 4096 dimensional vector (depending on the model)

1.3 0.3 1.1 0.9 0.8 0.7 0.1 0.4 0.8 1.5 1.6 2.3 4.2

Face Authentication with face embeddings

Embedding
Model

1.3 0.3 1.1 0.9 0.8 0.7

1.3 0.3 1.1 0.9 0.8 0.7

1.3 0.3 1.1 0.9 0.8 0.7

Far apart = different person

Close = same person

Face Authentication with face embeddings

Embedding
Model

1.3 0.3 1.1 0.9 0.8 0.7

1.3 0.3 1.1 0.9 0.8 0.7

1.3 0.3 1.1 0.9 0.8 0.7

Close = same person

“Closeness” = dot product similarity

Far apart = different person

How are these embeddings learned by a model?

Components of an ML Application

Model (Neural Network) + Training Data + Hardware (GPU / TPU)

Components of an ML Application

Model (Neural Network) + Training Data + Hardware (GPU / TPU)

Fancy DL Architectures
Available (timm, torchvision, 🤗HuggingFace etc.)

Components of an ML Application

Model (Neural Network) + Training Data + Hardware (GPU / TPU)

Usually available
Google Colab / cloud, gaming

rigs, university cluster etc.

Components of an ML Application

Model (Neural Network) + Training Data + Hardware (GPU / TPU)

????????? The most important aspect
This is where supervision is
performed

Model differences are overrated

Supervision differences are underrated.

Weakly-

Types of “supervision”

Ideal world! Not really happening Closer to the real world

Weakly-

Types of “supervision”

Yann LeCun

Pretext-based Self-Supervised Learning

Main Idea:
- Invent a task from the data and force the model to solve it

- Solving the task = understanding the data

How is this image rotated?

How is this image rotated?

How do you know?

Self-Supervised Learning: Predicting Rotations

Predict rotations

Hypothesis: a model could recognize the correct rotation of an object only if it has the “visual
commonsense” of what the object should look like unperturbed.

0 degrees 270 degrees 180 degrees 90 degrees

Self-Supervised Learning: Image Colorization

Image Colorization

Hypothesis: a model could only colorize an image if it has the “visual commonsense” of what
the object should look like.

Self-Supervised Learning: Predicting Relative Patches

Hypothesis: a model could only predict relative patches from an image if it has the “visual
commonsense” of what the global object should look like.

Masked-Image Modelling

- Mask some parts of the image

- Predict the masked parts given the visible parts

Models can cheat!

i.e. find shortcuts to solve the
task, don’t understand the
overall semantics of the data

Spurious correlations

Example: CNNs are biased towards texture

Question: Is it a good pretext-task to try to predict
whether an image is mirrored or not?

Question: Which images are mirrored?

Question: Which images are mirrored?

Learned representations may be tied to a specific pretext task!

Can we come up with a more general pretext task?

Contrastive Learning

Attract

Main Idea:

Multiple views of the same
image should have the same
representations

Contrastive Learning

Attract

Main Idea:

Multiple views of the same
image should have the same
representations

Problem: A model outputting a vector of
zeros satisfies this condition

(embedding collapse)

Contrastive Learning

Attract

Repel

Solution: Attract representations from the
same image, and repel representation
from a different image

How can models cheat in this task?

Attract

Repel

How can models cheat in this task?

Attract

Repel

Models can just look at the color histogram!

How can models cheat in this task?

Attract

Repel

Important! Use ColorJitter!

SimCLR: A Simple Framework for Contrastive Learning

Data Augmentation is Critical

Programmatically generate new variations
of an input

- Increase data variation
- Cheap + fast

Requirement: Must not change the underlying class
(an augmented cat must remain a cat)

Data Augmentation is Critical

Data Augmentation is Critical

- Common data augmentations
- Random Crops
- Horizontal Flips
- Vertical Flips
- Rotations
- Color Jitter
- Brightness / Contrast
- Random Blur
- Cutout
- etc

Other Augmentations - Image Mixup / CutMix

Mixup

Other Augmentations - Image Mixup / CutMix

Mixup

CutMix

Other Augmentations - Image Mixup / CutMix

Mixup

CutMix

Attentive CutMix

https://docs.google.com/file/d/1W3owuA6PKlPBHLpkYSjPEGzl43A_U595/preview

DINOv3 Training Pipeline

- Similar pattern:
- Train big model on large-scale data
- Distill knowledge into smaller models

DINOv3 Training Pipeline

- Similar pattern:
- Train big model on large-scale data
- Distill knowledge into smaller models

Observation: Unsupervised Learning is ill-posed

- Old dream of ML
- Does not really show up at small scale

- Optimize for one objective (i.e., contrastive loss)
- But we care about another objective! (e.g., classification accuracy)

The Platonic Representation
Hypothesis

- With enough scale / data, models
capture a common representation of
reality, irrespective of objective

- Intuitively, because models compress
the data in a similar way

- No time for this now; it’s a rabbit hole

Huggingface - The Github for AI Models /
Datasets

Huggingface - The Github for AI Models /
Datasets

Tasks in Computer Vision

- Scene text reading (OCR)
- Object recognition (classification)
- Object delineation (detection, segmentation)
- Chart / infographic parsing
- Document parsing
- Instrument reading
- Place recognition
- Action recognition
- Face recognition
- World knowledge
- Visual question answering

Tasks in Computer Vision

- Scene text reading (OCR)
- Object recognition (classification)
- Object delineation (detection, segmentation)
- Chart / infographic parsing
- Document parsing
- Instrument reading
- Place recognition
- Action recognition
- Face recognition
- World knowledge
- Visual question answering

Fake Tasks

Real Tasks

Workshop Overview

1. Part 0: Introduction to the Team & Rust for Edge AI
2. Part I: Lecture on Computer Vision

a. Main problems in Computer Vision
b. What exactly is a neural network? (CNNs / Transformers)
c. What exactly is an image embedding?
d. Computer vision on the Edge

3. Hands-On I: Air-gapped Face recognition on the Pi
4. Part II: Lecture on Natural Language Processing

a. A bit of history & development of modern LLMs
b. How does an LLM work? Tokenizers, pretraining, post-training
c. Context Engineering: Tool calling, RAG
d. Libraries: tokenizers-rs, llama.cpp

5. Hands-On II: Chat with a LLM on Pi
6. Hands-On III: Knight Rider

Workshop Overview

1. Part 0: Introduction to the Team & Rust for Edge AI
2. Part I: Lecture on Computer Vision

a. Main problems in Computer Vision
b. What exactly is a neural network? (CNNs / Transformers)
c. What exactly is an image embedding?
d. Computer vision on the Edge

3. Hands-On I: Air-gapped Face recognition on the Pi
4. Part II: Lecture on Natural Language Processing

a. A bit of history & development of modern LLMs
b. How does an LLM work? Tokenizers, pretraining, post-training
c. Context Engineering: Tool calling, RAG
d. Libraries: tokenizers-rs, llama.cpp

5. Hands-On II: Chat with a LLM on Pi
6. Hands-On III: Knight Rider

Connections

Laptop

WiFi: RustConf2025_AI / edgeaiworkshop

Raspberry Pi

Start the Pi (plug the SD Card and the power adapter)

Scan the QR Code for the Raspberry Pi’s IP address

Login: pi / edgeaiworkshop

Use VSCode or Zed (Linux or macOS) Remote Connection

- Use candle to instantiate and run inference for a ConvNext model
- Compute image embeddings and implement a basic vector storage
- Integrate in a POC application for real time user register and login

https://github.com/Wyliodrin/edge-ai-face-auth

 register
 login

CLI

Hands-on Overview
Privacy-Preserving, Local-Device, Facial Recognition

