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Interest in Rust

- Memory Safe oo

..... The growing percentage of developers that want to develop in Rust

.....

- Strongly Typed -
- Extensive Ecosystem
(crates.io) .

Java Styles at C/C++ speed

2017 2018 2019 2020 2021 2022 2023 2024

......


http://crates.io

# of papers per month
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Interest in Al - It keeps growing, but for how long?

- Exponential number of new papers each year!
- NeurlPS (“best” Al conference) 2025: a record of 25,000 submissions
- More funding, investments for Al companies
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Edge Al

Deployment of Al models directly on local devices or “edge devices”

- like sensors, cameras, loT gadgets, smartphones, industrial machinery
- Raspberry Pi

- Self-driving cars
- Drones

- Smartphones

- etc.
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Zheng, Yue, et al. "A review on edge large language models: Design, execution, and applications." ACM Computing Surveys 57.8 (2025): 1-35.
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Edge Al - Why is it possible?

- Moore’s Law

.
0k

- Just 6-7 years ago, running a real-time ~50M parameter model on edge devices was a

struggle
- Now, we can run 1B parameter models
- ~10x more computing power

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
Transistor count
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Moore’s Law: The number of transistors on microchips doubles every two years
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to make p st the world's largest problems.

e authors Hannah Ritchie and
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Edge Al - Why is it possible?

- Moore’s Law
- Just 6-7 years ago, running a real-time ~50M parameter model on edge devices was a

struggle
- NOW, we can run 1B pa rameter models Moore’s Law: The number of transistors on microchips doubles every two years

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.

- ~10X more Computlng power Transistor count
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- Not just due to hardware advancements!

- We have better inference techniques: oo
- Quantization, pruning i
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Ingredients for Edge Al

- Good, cheap hardware
- If you don’t have it, just
wait a couple of years.



Ingredients for Edge Al

Good, cheap hardware
If you don’t have it, just
wait a couple of years.

LLM Pruned LLM

Model pruning

Get a big model and make it
smaller by deleting neurons /
layers

B AXE
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Ingredients for Edge Al

LLM Pruned LLM Floating point

Signed Int8 x, 0-0-6-
o

- Good, cheap hardware Model pruning
- If you don’t have it, just Get a big model and make it

wait a couple of years. smaller by deleting neurons /
layers

Reduce precision of
weights to save
memory / inference
time
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The real reason: We scaled-up

- Consistent in Al: scale leads to predictable improvements in capability
- Model size, dataset size, compute

- Moore’s Law enables us to scale faster
- Paradoxically, scaling up also facilitates scaling down!
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The real reason: We scaled-up and distilled the knowledge

We trained larger and larger and more

capable models
GPT-2, GPT-3, GPT-4, GPT-5, ...
Deepseek-R1 (~400B params)
Qwen-480B

BAXY



BAXY
The real reason: We scaled-up and distilled the knowledge

- We trained larger and larger and more
capable models
GPT-2, GPT-3, GPT-4, GPT-5, ...
Deepseek-R1 (~400B params)
Qwen-480B

- Large models can then teach smaller faster
versions of themselves
gpt-mini, gpt-nano
deepseek -7B
gwen-1B, qwen-3B
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The real reason: We scaled-up and distilled the knowledge

- We trained larger and larger and more

capable models
GPT-2, GPT-3, GPT-4, GPT-5, ...
Deepseek-R1 (~400B params)
Qwen-480B

- Large models can then teach smaller faster

versions of themselves
gpt-mini, gpt-nano
deepseek -7B
gwen-1B, qwen-3B

- Small models reach a performance level that
cannot be otherwise obtained




Nowadays, “distillation” has be rebranded

- “Synthetic Data”
- Use an (very) large, highly capable model to generate more (high-quality)

data / clean existing data
Paraphrasing
Generate instructions
Enrich dataset by automatic annotations

generated

i data
initial

human-curated locally-
seed data 5 (running LLM

BAXY
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Sounds good but ...

Bitter lesson: progress of Al in the past 70 years boils down to

e Develop progressively more general methods with weaker modeling
assumptions
e Add more data and computation (i.e. scale up)

The Bitter Lesson

Rich Sutton

March 13, 2019

The biggest lesson that can be read from 70 years of Al research is that general methods that leverage
computation are ultimately the most effective, and by a large margin. The ultimate reason for this is
Moore's law, or rather its generalization of continued exponentially falling cost per unit of
computation. Most Al research has been conducted as if the computation available to the agent were
constant (in which case leveraging human knowledge would be one of the only ways to improve
performance) but, over a slightly longer time than a typical research project, massively more
computation inevitably becomes available. Seeking an improvement that makes a difference in the
shorter term, researchers seek to leverage their human knowledge of the domain, but the only thing
that matters in the long run is the leveraging of computation. These two need not run counter to each

oL Ry e SO iy R S B, | oy (i ol L DS, WD o R © e | Perill L Paeranes S



http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Al + Rust

- EdgeAl

- Tokenizers

- WASM

- Raspberry Pls

- In practice, Rust is useful for building
high-performance data pipelines

- For example: & HuggingFace tokenizers
library is built on top of Rust

2ol
ALL MODERN DIGITAL
INFRASTRUCTURE
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Common ML Frameworks (non Rust)

Inference
Training e GGML
e Pytorch (Meta) e ONNX Runtime (Microsoft)

o LiteRT (Google)

e Executorch (Meta)
e TVM (Apache)

e TF Micro (Google)

e Tensorflow (Google)
e JAX (Google)
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Why different Frameworks for Inference and Training?

Training Inference

e Focus on flexibility e Focus on speed and size

e Feature-rich e Compiled into apps / devices

e GPU first e Cross platform

e GPU, CPU, NPU, MCU
(most in Python)

(most in C++)
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Specialized Inference Frameworks

e Cadence HiFi NN Lib e Huawei CANN
e ARM-NN e Android NNAPI
e Apple Core ML e Intel OpenVino
e Rockchip NPU e Xilinx Vitis-Al

e Qualcomm QNN

Everyone builds their own inference engine...
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How Rust can help

Everything that makes Rust great in other use-cases also applies to ML.:

e [Easy cross-compilation

e Great optimization of the same code on different architectures
e Memory Safety

e Awesome Tooling

e (Great abstractions of complex patterns
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Rust ML Frameworks

Burn

(Tracel Al)

@ tract
Candle

/’:?x H
@:j Hugging Face



Burn (Tracel Al)

Training & Inference

GPU, CPU & MCU (no_std)

Own GPU compute language (CubeCL)
GPU works on NVIDIA, AMD, Intel & Web

Only basic ONNX import

GPU and larger model focus

Especially slow for embedded platforms
No Accelerator support (NPU)




ONNX OP
Abs
Acos
Acosh
Add
And
ArgMax
ArgMin
Asin
Asinh
Atan
Atanh
Attention
AveragePool1d

AveragePool2d

BatchNormalization

Bernoulli

BitShift

Burn ONNX Import

Import Support
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RNN
RoiAlign

Round

Scan

Scatter
ScatterElements
ScatterND

Selu

SequenceAt
SequenceConstruct
SequenceEmpty
SequenceErase
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SequenceMap
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Shrink
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Sign

Sin

Sinh
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Candle (Hugging Face)

e (Good selection of already implemented models

e Many examples

e Support for CUDA, Metal, Intel MKL, Apple
Accelerate

e Programmatically first

e Only very basic ONNX import
No universal GPU support (AMD, Intel, Web)
e No embedded accelerators

.
0k

Hugging Face

use candle_core::{Device, Tensor};

fn main() -> Result<(), Box<dyn std::error::Error>> {
let device = Device::Cpu;

let a = Tensor::randn(0f32, 1., (2, 3), &device)?;
let b = Tensor::randn(0f32, 1., (3, 4), &device)?;

let ¢ = a.matmul(&b)?;
println!("{c}");
0k(())
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Tract (Sonos)
. Puro Rus tract
e Support of most ONNX ops
e Super easy import
e Optimized for smaller models on embedded

devices (Raspberry Pi)
e Great CLI Test and Benchmarking Tool

e CPU only

e No no_std support
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ORT (pyke.io)

e Wrapper around ONNX Runtime (C++)
e Support 100% of ONNX operators
e Super easy to use with prebuilt static libraries

e Supports all GPUs and many accelerators

e Super fast on CPUs and embedded

—

e Battle tested and optimized | ML inference for RUS

e C++ wrapping can make things harder

e Builds for accelerators can be tricky



ORT - Execution Providers

EP
NVIDIA CUDA 7

NVIDIA TensorRT 7

Microsoft DirectML 2

Apple CoreML 7
AMD ROCm 7
Intel OpenVINO 7
Intel oneDNN 7

XNNPACK 7

Qualcomm QNN 7

Cargo feature

cuda

tensorrt

directml

coreml

rocm

openvino

onednn

xnnpack

qnn

Supported

4
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Binaries
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Huawei CANN 7
Android NNAPI 7
Apache TVM 7
ArmACL 7
ArmNN 7

AMD MIGraphX 7
AMD Vitis Al 7

Rockchip RKNPU 7

WebGPU

Microsoft Azure 7

cann

nnapi

tvm

acl

armnn

migraphx

vitis

rknpu

webgpu

azure
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ORT - Upcoming features (v2.0.0-rc.10)

e Alternative Backends (Tract / Candle)

e Model Editor API (build models programmatically)
e no_std support

e WebGPU support with prebuilt-libraries

e Static linking of CUDA and TensorRT libraries

BAXY
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Workshop Overview

1. Part 0: Introduction to the Team & Rust for Edge A

2. Partl: Lecture on Computer Vision

Main problems in Computer Vision

What exactly is a neural network? (CNNs / Transformers)
What exactly is an image embedding?

e o T o

Computer vision on the Edge

3. Hands-On I: Air-gapped Face recognition on the P

4. Partll: Lecture on Natural Language Processing
a. Abit of history & development of modern LLMs
b. How does an LLM work? Tokenizers, pretraining, post-training
c. Context Engineering: Tool calling, RAG
d. Libraries: tokenizers-rs, llama.cpp

5. Hands-On ll: Chat with a LLM on Pi
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Workshop Overview

1. Part 0: Introduction to the Team & Rust for Edge A




Workshop Overview

2. Partl: Lecture on Computer Vision

e o T o

Main problems in Computer Vision

What exactly is a neural network? (CNNs / Transformers)
What exactly is an image embedding?

Computer vision on the Edge

B AXE





