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Interest in Rust

- Memory Safe
- Strongly Typed
- Extensive Ecosystem 

(crates.io)

     Java Styles at C/C++ speed

http://crates.io


Interest in AI - It keeps growing, but for how long?

- Exponential number of new papers each year!
- NeurIPS (“best” AI conference) 2025: a record of 25,000 submissions

- More funding, investments for AI companies



Edge AI

- Deployment of AI models directly on local devices or “edge devices” 
- like sensors, cameras, IoT gadgets, smartphones, industrial machinery
- Raspberry Pi

- Self-driving cars
- Drones
- Smartphones
- etc.



Zheng, Yue, et al. "A review on edge large language models: Design, execution, and applications." ACM Computing Surveys 57.8 (2025): 1-35.
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Edge AI - Why is it possible?

- Moore’s Law
- Just 6-7 years ago, running a real-time ~50M parameter model on edge devices was a 

struggle
- Now, we can run 1B parameter models

- ~10x more computing power



Edge AI - Why is it possible?

- Moore’s Law
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- Not just due to hardware advancements!
- We have better inference techniques:

- Quantization, pruning
- Distillation!
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- Good, cheap hardware
- If you don’t have it, just 

wait a couple of years.

- Model pruning
- Get a big model and make it 

smaller by deleting neurons / 
layers

- Reduce precision of 
weights to save 
memory / inference 
time



The real reason: We scaled-up

- Consistent in AI: scale leads to predictable improvements in capability
- Model size, dataset size, compute

- Moore’s Law enables us to scale faster
- Paradoxically, scaling up also facilitates scaling down!



The real reason: We scaled-up and distilled the knowledge

- We trained larger and larger and more 
capable models

- GPT-2, GPT-3, GPT-4, GPT-5, ...
- Deepseek-R1 (~400B params)
- Qwen-480B

- Large models can then teach smaller faster 
versions of themselves

- gpt-mini, gpt-nano
- deepseek -7B
- qwen-1B, qwen-3B

- Small models reach a performance level that 
cannot be otherwise obtained
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- “Synthetic Data”
- Use an (very) large, highly capable model to generate more (high-quality) 

data / clean existing data
- Paraphrasing
- Generate instructions
- Enrich dataset by automatic annotations

Nowadays, “distillation” has be rebranded



Sounds good but …

Bitter lesson: progress of AI in the past 70 years boils down to

● Develop progressively more general methods with weaker modeling 
assumptions

● Add more data and computation (i.e. scale up)

http://www.incompleteideas.net/IncIdeas/BitterLesson.html


- Edge AI
- Tokenizers
- WASM
- Raspberry PIs

- In practice, Rust is useful for building 
high-performance data pipelines

- For example: 🤗 HuggingFace tokenizers 
library is built on top of Rust

AI + Rust



Common ML Frameworks (non Rust)

Training

● Pytorch (Meta)

● Tensorflow (Google)

● JAX (Google)

Inference

● GGML
● ONNX Runtime (Microsoft)
● LiteRT (Google)
● Executorch (Meta)
● TVM (Apache)
● TF Micro (Google)



Why different Frameworks for Inference and Training?

Training

● Focus on flexibility

● Feature-rich

● GPU first

(most in Python)

Inference

● Focus on speed and size

● Compiled into apps / devices

● Cross platform

● GPU, CPU, NPU, MCU

(most in C++)



Specialized Inference Frameworks

● Cadence HiFi NN Lib

● ARM-NN

● Apple Core ML

● Rockchip NPU

● Huawei CANN

● Android NNAPI

● Intel OpenVino

● Xilinx Vitis-AI

● Qualcomm QNN

Everyone builds their own inference engine…



How Rust can help

Everything that makes Rust great in other use-cases also applies to ML:

● Easy cross-compilation
● Great optimization of the same code on different architectures
● Memory Safety
● Awesome Tooling
● Great abstractions of complex patterns



Rust ML Frameworks

(Tracel AI)

(Pyke.io)

(Sonos) Candle



Burn (Tracel AI)

● Training & Inference

● GPU, CPU & MCU (no_std)

● Own GPU compute language (CubeCL)

● GPU works on NVIDIA, AMD, Intel & Web

● Only basic ONNX import
● GPU and larger model focus 
● Especially slow for embedded platforms
● No Accelerator support (NPU)



Burn ONNX Import

[...]



Candle (Hugging Face)

● Good selection of already implemented models

● Many examples

● Support for CUDA, Metal, Intel MKL, Apple 

Accelerate

● Programmatically first

● Only very basic ONNX import
● No universal GPU support (AMD, Intel, Web)
● No embedded accelerators



Tract (Sonos)

● Pure Rust

● Support of most ONNX ops

● Super easy import

● Optimized for smaller models on embedded 

devices (Raspberry Pi)

● Great CLI Test and Benchmarking Tool

● CPU only

● No no_std support



ORT (pyke.io)

● Wrapper around ONNX Runtime (C++)

● Support 100% of ONNX operators

● Super easy to use with prebuilt static libraries

● Supports all GPUs and many accelerators

● Super fast on CPUs and embedded

● Battle tested and optimized

● C++ wrapping can make things harder

● Builds for accelerators can be tricky



ORT - Execution Providers



ORT - Upcoming features (v2.0.0-rc.10)

● Alternative Backends (Tract / Candle)

● Model Editor API (build models programmatically)

● no_std support

● WebGPU support with prebuilt-libraries

● Static linking of CUDA and TensorRT libraries



Workshop Overview

1. Part 0: Introduction to the Team & Rust for Edge AI
2. Part I: Lecture on Computer Vision

a. Main problems in Computer Vision
b. What exactly is a neural network? (CNNs / Transformers)
c. What exactly is an image embedding?
d. Computer vision on the Edge

3. Hands-On I: Air-gapped Face recognition on the Pi 
4. Part II: Lecture on Natural Language Processing

a. A bit of history & development of modern LLMs
b. How does an LLM work? Tokenizers, pretraining, post-training
c. Context Engineering: Tool calling, RAG
d. Libraries: tokenizers-rs, llama.cpp

5. Hands-On II: Chat with a LLM on Pi
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