Edge Al Workshop

Rust Workshop

QY 5%

Materials

@ (w)
%“‘%g

B AXE
Interest in Rust

- Memory Safe oo

..... The growing percentage of developers that want to develop in Rust

.....

- Strongly Typed -
- Extensive Ecosystem
(crates.io) .

Java Styles at C/C++ speed

2017 2018 2019 2020 2021 2022 2023 2024

......

http://crates.io

of papers per month

.
XX
Interest in Al - It keeps growing, but for how long?

- Exponential number of new papers each year!
- NeurlPS (“best” Al conference) 2025: a record of 25,000 submissions
- More funding, investments for Al companies

ML+AI arXiv papers per month Precedence Artificial Intelligence (Al) Market Size 2024 to 2034 (USD Billion)
4,000 log-scale 4000 $3,680.47
1,000 3500
$3,077.32
3000
3,000 o " $2,575.16
1 .-‘._.__.}.’,_:3;‘.*‘.' = $2,156.75
o 2000 $1,807.84
2,000 i $1,516.64
1500 $1,273.42
1.000 1000 $757.58 ssoo.oos1’°7°'1°
’ $638.23 '
500 I I I
a 0
1994 2007 2021 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034

p u b I icat i 0 n ye a r Source: https://www.precedenceresearch.com/artificial-intelligence-market

B AXE

Edge Al

Deployment of Al models directly on local devices or “edge devices”

- like sensors, cameras, loT gadgets, smartphones, industrial machinery
- Raspberry Pi

- Self-driving cars
- Drones

- Smartphones

- etc.

B AXE

e | D) (8] (8] (L &) (=) (=)
Deployments = ——
o) (@ Y REIEIMN

Model Algorithm Hardware Application System
Deployment Deployment Support Implementation
-
Quantization|| Pruning (3 (; E—
——— Lightweight || Software-Level Optimizations ||Accelerated || Personal-Use Applications
Knowledge Distillation Model Riiiitiie

» || Hardware-Software Co-Design || ———p Enterprise Applications

Low-Rank Approximation

Hardware-Level Optimizations Industrial Applications
\ Complementary Methods \ J \)

Pre-Deployment Techniques Runtime Optimizations On-Device Applications

Zheng, Yue, et al. "A review on edge large language models: Design, execution, and applications." ACM Computing Surveys 57.8 (2025): 1-35.

Llama-3
m Hardware (TOPS) PanGu-a ama (7B-703)
letl2 4 pswi3spy (2.6B,13B,200B) _OPT _ (7B-65B)
(125M-175B) (125M—66B) o s
O e} . .
RoBERTa o o
BERT (125M, 355M) a o * Phi 24 Phi-3
m (110M, 340M) & : e E . (2.7B) ® (3.8B-14B)
1 Phi-1.5
& let9 -) H e GPTJ ° 4 o
< o . o (6B) o BLO(I)M L
~ ® -
> e (560M-176B) Gap
S —_— Z
=
=
let3 - AGXOrm QSD X Plus
SD X Elite
AGX Xavier XavnerNX QSD8ss QSD888+ OrinNX = OrmNano 2
B QSDS55 QSD865 o - n]| g 5| R lu
i o A1'4 Als MiUtra Al6 M2Ura Al7 M3 M4
1 Al2 Al3
2019 2020 2021 2022 2023 2024
Time

Zheng, Yue, et al. "A review on edge large language models: Design, execution, and applications." ACM Computing Surveys 57.8 (2025): 1-35.

Edge Al - Why is it possible?

- Moore’s Law

.
0k

- Just 6-7 years ago, running a real-time ~50M parameter model on edge devices was a

struggle
- Now, we can run 1B parameter models
- ~10x more computing power

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
Transistor count

50,000,000,000

Moore’s Law: The number of transistors on microchips doubles every two years
in Data

10,000,000,000
5,000,000,000

1,000,000,000
500,000,000

100,000,000
50,000,000

10,000,000
5,000,000

1,000,000
500,000

100,000
50,000

10,000
5000

1,000
Q AV AX A AB O O ok b O O N ok o » Q4 X ® QO O > b @ O
A QY VO 4P R R R A LA o o0 @ O & P P ISP P
R R I T R 5

Year in which the microchip was first introduced

Licensed under CC-B'

Data source: Wikip
OurWorldinData.or

ikipedia.org/wiki/Transistor_count)

to make p st the world's largest problems.

e authors Hannah Ritchie and

.
XX
Edge Al - Why is it possible?

- Moore’s Law
- Just 6-7 years ago, running a real-time ~50M parameter model on edge devices was a

struggle
- NOW, we can run 1B pa rameter models Moore’s Law: The number of transistors on microchips doubles every two years

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.

- ~10X more Computlng power Transistor count

50,000,000,000

10,000,000,000
5,000,000,000

1,000,000,000
500,000,000

- Not just due to hardware advancements!

- We have better inference techniques: oo
- Quantization, pruning i
= DiSti"ation! 100,000

50,000

e

10,000 145 40c
5000

1,000 "™
Q AV A A AD O A o b P QO L gk go ® Ve
A QY VO 4P R R R A LA o o0 @ P &
@@‘@@@@@@@@@@@@@m@g@@ﬂ?
Data source: Wikip Year in which the microchip was first introduced
OurWorldinData.or

Transistor_count)

(wikipedia.or
han ake [against the

a

st problems. Licensed under CC-BY by the authors Hannah Ritchie and Max Roser

B AXE

Ingredients for Edge Al

- Good, cheap hardware
- If you don’t have it, just
wait a couple of years.

Ingredients for Edge Al

Good, cheap hardware
If you don’t have it, just
wait a couple of years.

LLM Pruned LLM

Model pruning

Get a big model and make it
smaller by deleting neurons /
layers

B AXE

B AXE

Ingredients for Edge Al

LLM Pruned LLM Floating point

Signed Int8 x, 0-0-6-
o

- Good, cheap hardware Model pruning
- If you don’t have it, just Get a big model and make it

wait a couple of years. smaller by deleting neurons /
layers

Reduce precision of
weights to save
memory / inference
time

B AXE
The real reason: We scaled-up

- Consistent in Al: scale leads to predictable improvements in capability
- Model size, dataset size, compute

- Moore’s Law enables us to scale faster
- Paradoxically, scaling up also facilitates scaling down!

Images 8x8, loss per image Text—Image Video
150+ " -

[}
8 (o)
T e = ()

~ 10°

&

)

S Image — Text Language
100 4>~

m 0.7 &
0.50 107

=== xCIO’s) s \\\ = - (3 fw'ﬁ)

10"® 10~®* 10"* 10~* 1072 107! 10°

Compote (PE-days) Line color denotes model size

The real reason: We scaled-up and distilled the knowledge

We trained larger and larger and more

capable models
GPT-2, GPT-3, GPT-4, GPT-5, ...
Deepseek-R1 (~400B params)
Qwen-480B

BAXY

BAXY
The real reason: We scaled-up and distilled the knowledge

- We trained larger and larger and more
capable models
GPT-2, GPT-3, GPT-4, GPT-5, ...
Deepseek-R1 (~400B params)
Qwen-480B

- Large models can then teach smaller faster
versions of themselves
gpt-mini, gpt-nano
deepseek -7B
gwen-1B, qwen-3B

BAXY

The real reason: We scaled-up and distilled the knowledge

- We trained larger and larger and more

capable models
GPT-2, GPT-3, GPT-4, GPT-5, ...
Deepseek-R1 (~400B params)
Qwen-480B

- Large models can then teach smaller faster

versions of themselves
gpt-mini, gpt-nano
deepseek -7B
gwen-1B, qwen-3B

- Small models reach a performance level that
cannot be otherwise obtained

Nowadays, “distillation” has be rebranded

- “Synthetic Data”
- Use an (very) large, highly capable model to generate more (high-quality)

data / clean existing data
Paraphrasing
Generate instructions
Enrich dataset by automatic annotations

generated

i data
initial

human-curated locally-
seed data 5 (running LLM

BAXY

.
0k

Sounds good but ...

Bitter lesson: progress of Al in the past 70 years boils down to

e Develop progressively more general methods with weaker modeling
assumptions
e Add more data and computation (i.e. scale up)

The Bitter Lesson

Rich Sutton

March 13, 2019

The biggest lesson that can be read from 70 years of Al research is that general methods that leverage
computation are ultimately the most effective, and by a large margin. The ultimate reason for this is
Moore's law, or rather its generalization of continued exponentially falling cost per unit of
computation. Most Al research has been conducted as if the computation available to the agent were
constant (in which case leveraging human knowledge would be one of the only ways to improve
performance) but, over a slightly longer time than a typical research project, massively more
computation inevitably becomes available. Seeking an improvement that makes a difference in the
shorter term, researchers seek to leverage their human knowledge of the domain, but the only thing
that matters in the long run is the leveraging of computation. These two need not run counter to each

oL Ry e SO iy R S B, | oy (i ol L DS, WD o R © e | Perill L Paeranes S

http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Al + Rust

- EdgeAl

- Tokenizers

- WASM

- Raspberry Pls

- In practice, Rust is useful for building
high-performance data pipelines

- For example: & HuggingFace tokenizers
library is built on top of Rust

2ol
ALL MODERN DIGITAL
INFRASTRUCTURE

N

r h

pf o

d

BAXY

Common ML Frameworks (non Rust)

Inference
Training e GGML
e Pytorch (Meta) e ONNX Runtime (Microsoft)

o LiteRT (Google)

e Executorch (Meta)
e TVM (Apache)

e TF Micro (Google)

e Tensorflow (Google)
e JAX (Google)

BAXY

Why different Frameworks for Inference and Training?

Training Inference

e Focus on flexibility e Focus on speed and size

e Feature-rich e Compiled into apps / devices

e GPU first e Cross platform

e GPU, CPU, NPU, MCU
(most in Python)

(most in C++)

B AXE

Specialized Inference Frameworks

e Cadence HiFi NN Lib e Huawei CANN
e ARM-NN e Android NNAPI
e Apple Core ML e Intel OpenVino
e Rockchip NPU e Xilinx Vitis-Al

e Qualcomm QNN

Everyone builds their own inference engine...

B AXE

How Rust can help

Everything that makes Rust great in other use-cases also applies to ML.:

e [Easy cross-compilation

e Great optimization of the same code on different architectures
e Memory Safety

e Awesome Tooling

e (Great abstractions of complex patterns

B AXE

Rust ML Frameworks

Burn

(Tracel Al)

@ tract
Candle

/’:?x H
@:j Hugging Face

Burn (Tracel Al)

Training & Inference

GPU, CPU & MCU (no_std)

Own GPU compute language (CubeCL)
GPU works on NVIDIA, AMD, Intel & Web

Only basic ONNX import

GPU and larger model focus

Especially slow for embedded platforms
No Accelerator support (NPU)

ONNX OP
Abs
Acos
Acosh
Add
And
ArgMax
ArgMin
Asin
Asinh
Atan
Atanh
Attention
AveragePool1d

AveragePool2d

BatchNormalization

Bernoulli

BitShift

Burn ONNX Import

Import Support

RRRN XX

FERERE X X X X

R

Burn Support

B R X X

(<<

ERRR X X X X

R

RNN
RoiAlign

Round

Scan

Scatter
ScatterElements
ScatterND

Selu

SequenceAt
SequenceConstruct
SequenceEmpty
SequenceErase
Sequencelnsert
Sequencelength
SequenceMap
Shape

Shrink

Sigmoid

Sign

Sin

Sinh

BEXXXXXXXXXXXXEXX

RE X

[<SHE<|

B X3

] X

BX XXX XXXXX X

SRR X

<

[...]

Candle (Hugging Face)

e (Good selection of already implemented models

e Many examples

e Support for CUDA, Metal, Intel MKL, Apple
Accelerate

e Programmatically first

e Only very basic ONNX import
No universal GPU support (AMD, Intel, Web)
e No embedded accelerators

.
0k

Hugging Face

use candle_core::{Device, Tensor};

fn main() -> Result<(), Box<dyn std::error::Error>> {
let device = Device::Cpu;

let a = Tensor::randn(0f32, 1., (2, 3), &device)?;
let b = Tensor::randn(0f32, 1., (3, 4), &device)?;

let ¢ = a.matmul(&b)?;
println!("{c}");
0k(())

B AXE

Tract (Sonos)
. Puro Rus tract
e Support of most ONNX ops
e Super easy import
e Optimized for smaller models on embedded

devices (Raspberry Pi)
e Great CLI Test and Benchmarking Tool

e CPU only

e No no_std support

BAXY
ORT (pyke.io)

e Wrapper around ONNX Runtime (C++)
e Support 100% of ONNX operators
e Super easy to use with prebuilt static libraries

e Supports all GPUs and many accelerators

e Super fast on CPUs and embedded

—

e Battle tested and optimized | ML inference for RUS

e C++ wrapping can make things harder

e Builds for accelerators can be tricky

ORT - Execution Providers

EP
NVIDIA CUDA 7

NVIDIA TensorRT 7

Microsoft DirectML 2

Apple CoreML 7
AMD ROCm 7
Intel OpenVINO 7
Intel oneDNN 7

XNNPACK 7

Qualcomm QNN 7

Cargo feature

cuda

tensorrt

directml

coreml

rocm

openvino

onednn

xnnpack

qnn

Supported

4

® ¢ ¢ ¢ 6 & 0 o

Binaries

<

<HN<

B X X X

X

Huawei CANN 7
Android NNAPI 7
Apache TVM 7
ArmACL 7
ArmNN 7

AMD MIGraphX 7
AMD Vitis Al 7

Rockchip RKNPU 7

WebGPU

Microsoft Azure 7

cann

nnapi

tvm

acl

armnn

migraphx

vitis

rknpu

webgpu

azure

L 2 2K B 2 BN JE 2R BE R 2

B X X X X X X X X

X

ORT - Upcoming features (v2.0.0-rc.10)

e Alternative Backends (Tract / Candle)

e Model Editor API (build models programmatically)
e no_std support

e WebGPU support with prebuilt-libraries

e Static linking of CUDA and TensorRT libraries

BAXY

BAXY
Workshop Overview

1. Part 0: Introduction to the Team & Rust for Edge A

2. Partl: Lecture on Computer Vision

Main problems in Computer Vision

What exactly is a neural network? (CNNs / Transformers)
What exactly is an image embedding?

e o T o

Computer vision on the Edge

3. Hands-On I: Air-gapped Face recognition on the P

4. Partll: Lecture on Natural Language Processing
a. Abit of history & development of modern LLMs
b. How does an LLM work? Tokenizers, pretraining, post-training
c. Context Engineering: Tool calling, RAG
d. Libraries: tokenizers-rs, llama.cpp

5. Hands-On ll: Chat with a LLM on Pi

B AXE
Workshop Overview

1. Part 0: Introduction to the Team & Rust for Edge A

Workshop Overview

2. Partl: Lecture on Computer Vision

e o T o

Main problems in Computer Vision

What exactly is a neural network? (CNNs / Transformers)
What exactly is an image embedding?

Computer vision on the Edge

B AXE

